102 Wilmot Road • Suite 300 • Deerfield, Illinois 60015 ☎ (312) 940-7200 October 4, 1989 Mr. Dennis Ahlberg Emergency Response Unit Illinois Evnironmental Protection Agency 2200 Churchill Road Springfield, IL 62794-9276 RE: Phase II Investigation Report Suntect Industries, Inc. Rockford, Illinois Dear Mr. Ahlberg: On behalf of Suntect Industries, Inc., enclosed is one copy of our report on the Phase II Investigation conducted at the plant. Very truly yours, ERM-NORTH CENTRAL, INC. James E. Kene James E. Kane, P.E. Project Manger ftt Enclosure # PHASE II INVESTIGATION OF UNDERGROUND STORAGE TANKS AT SUNTEC INDUSTRIES OCTOBER 3, 1989 ## PREPARED BY: ENVIRONMENTAL RESOURCES MANAGEMENT-NORTH CENTRAL, INC. 102 WILMOT ROAD, SUITE 300 DEERFIELD, ILLINOIS 60015 PROJECT NO. 9059 ## TABLE OF CONTENTS | Section | <u>Title</u> | <u>Page No.</u> | |---------|--|-----------------| | LIST OF | TABLES | | | LIST OF | FIGURES | | | 1.0 | INTRODUCTION | 1 | | 2.0 | SOIL GAS SURVEY | 2 | | | 2.1 Survey Methodology
2.2 Survey Results | 2 3 | | 3.0 | VERTICAL EXTENT OF CONTAMINATION | 4 | | | 3.1 Soil Boring Protocol3.2 Soil Screening and Analysis3.3 Ground Water Monitoring | 4
5
10 | | 4.0 | SUMMARY AND CONCLUSIONS | 11 | | 5.0 | RECOMMENDATIONS | 12 | ## LIST OF TABLES | Table No. | <u>Description</u> | Following
Page No. | |-----------|--|-----------------------| | 1 | Soil Gas Survey Data | 3 | | 2 | Soil Boring Field Screening Data | 5 | | 3 | Analytical Data for Underground
Tank Backfill Samples | 6 | | 4 | Analytical Data for Soil Borings | 7 | | 5 | Ground Water Analytical Data | 10 | ## LIST OF FIGURES | Figure No. | Description | Following Page No. | |------------|----------------------------------|--------------------| | 1 | Soil Gas Survey | 2 | | 2 | Soil Boring Locations | 4 | | 3 | Proposed Ground Water Monitoring | 12 | ## PHASE II INVESTIGATION OF UNDERGROUND STORAGE TANKS AT SUNTEC INDUSTRIES #### 1.0 INTRODUCTION The Suntec Industries, Inc. (Suntec) facility located at 2210 Harrison Avenue, Rockford, Illinois utilized 12 underground storage tanks and two in-ground, vaulted storage tanks for storage of raw materials used in the manufacturing process, waste materials, and motor fuel. This facility currently utilizes two underground tanks for storage of fuel oil used in building space These last two tanks were installed in 1977 to replace two older underground tanks taken out of service at that time. Suntec began a program to close all of the facility's underground storage tanks, except the fuel oil tanks, in January, 1989. initial steps of this program involved the removal of tank contents, tank cleaning, and sampling and analysis of soils in the immediate vicinity. Examination of the analytical data obtained from these samples indicated that soils in the vicinity of several tanks contained volatile and semivolatile organic Based on the analytical data, a notification of potential release from these underground tanks was made to the Illinois Environmental Protection Agency (IEPA) by Suntec on February 9, 1989. At the request of Suntec, Environmental Resources Management-North Central, Inc. (ERM) performed an initial investigation into the degree and extent of organic compounds in the vicinity of the tank. A report presenting the data obtained in this program was submitted to the IEPA on May 1, 1989. This investigation identified three areas of potential soil contamination in the northern portion of the underground tank area. The May report contained a work plan for a Phase II Investigation designed to obtain further information concerning the horizontal and vertical extent of migration in the identified areas. The Phase II Investigation Work Plan included an additional soil gas survey to indicate the horizontal extent of migration and a series of borings to define the vertical extent of migration in the identified areas. The following sections of this report describe the Phase II Investigation methodology and present all survey data, conclusions and recommendations. ### 2.0 SOIL GAS SURVEY The initial soil gas survey indicated that areas of potential soil contamination existed beyond the area investigated. The objective of the followup survey was to indicate the horizontal boundaries of soil contamination through the collection and screening of soil gas for volatile organics. ## 2.1 Survey Methodology A 25 foot by 25 foot grid network tied to the western property line, beginning at the northern edge of the area previously tested, was used to locate the gas sampling points. A single line of sampling points, 25 feet apart, was used in the area between the drainage ditch running through adjacent property and Suntec's western property line. All gas sampling points used in the followup survey are shown in Figure 1. The initial survey sampling points are depicted in the figure as asterisks. The followup survey sampling points are identified with alpha-numeric labels. The soil gas procedure requires driving a perforated stainless steel probe into the soil and pulling a known quantity of soil vapor through a Teflon tube sampling train. An HNu photoionization detector is used to obtain field measurement of volatile organic concentrations in the soil gas. ## 2.2 Survey Results All data recorded during the followup soil gas survey are presented in Table 1. Soil gas levels detected in the initial survey are presented in the May 1, 1989 report. The soil gas survey were used as a screening technique to indicate if there had been horizontal migration through soils 10 feet or less below ground surface (bgs). Laboratory analysis of representative soil samples taken from the areas indicated by the soil gas surveys provides confirmatory data on the degree and extent of migration. The table indicates that "hits" were recorded only at Sampling Locations A1, A8, and A9. The meter readings recorded at Locations A3 and D1 were judged to be anomalies, rather than indications of soil contamination, because of the relatively low meter reading (less than 2 Vppm) and the degree of separation from areas of recorded "hits". The meter reading at Location A1 was discounted because of the distance from any known potential source or "hit" area. The following conclusions can be drawn from the data: o Soil contamination does not extend beyond the facility's western property line; and ## TABLE 1 ## SOIL GAS SURVEY DATA MAY 17, 1989 | Soil Gas Sampling Location | HNu Meter Reading, ppmv | |----------------------------|-------------------------| | | | | A1 | 12 | | A2 | 0.0 | | A3 | 1.7 | | A4 | 0.0 | | A5 | O • O | | A6 | 0.0 | | A7 | 0.0 | | A8 | 91 | | A9 | 9.6 | | D1 | 1.3 | | D2 | 0.0 | | D3 | 0.0 | | D4 | 0.0 | | D5 | 0.0 | | D6 | 0.0 | | D7 | 0.0 | o Soil contamination in the vicinity of the Flammable Liquid Storage Building is confined to an area within 25 feet of the northern and western building walls. The followup soil gas survey, in combination with the initial survey, has identified two principal areas of concern: (1) within 25 feet of the northern and western walls of the Flammable Liquid Storage Building; and (2) a larger area extending from about the Oil Room to the Chip Room, bounded by the western property line (See Figure 2). #### 3.0 VERTICAL EXTENT OF MIGRATION The vertical extent of migration was evaluated using a total of 15 soil borings. The information obtained in the two soil gas surveys was used to select the locations for the initial series of six borings (B-1 through B-6). The final series of nine borings were located to further characterize materials in the immediate vicinity of the underground tanks. The locations of all borings are shown in Figure 2. ## 3.1 Soil Boring Protocol Soil samples were obtained from each of the initial six borings at 2.5 foot depth intervals and screened for volatile organics using an HNu photoionization detector (PID). The entire volume of soil contained in the split spoon sampler underwent meter screening. A composite soil sample of each depth interval was prepared, sealed and set aside for possible laboratory analysis. Composite samples representing the final boring depth at each location were submitted for laboratory analysis of VOC and isopropyl alcohol. Additionally, several composite samples were submitted for analysis to quantify apparent migration indicated by elevated meter readings recorded during field screening. The borings were advanced from ground surface to a depth where: - Meter screening indicated the lack of measurable volatile organics, or - The saturated zone was encountered. In two locations, field screening indicated that soil migration potentially extended to a saturated zone. These Borings, B-3 and B-6, were converted to Monitoring Wells MW-3 and MW-6. The final depth below ground surface of MW-6 was only 11 feet. The decision to install this well at a relatively shallow depth was made to prevent the creation of a conduit for materials to migrate to underlying soils. The final nine borings were used to obtain representative samples of material in the immediate vicinity of the underground tanks at three discrete depths (5, 10 and 15 feet). All samples were screened for the presence of volatile organic compounds using a HNu PID and the method previously described. Soil sampled at each depth was submitted for laboratory analysis of volatile and semivolatile organic compounds. ### 3.2 Soil Screening and Analysis Table 2 presents all field screening data obtained in the initial six borings. Complete boring logs and well installation logs prepared by an ERM geologist are presented in Appendix A. The elevated meter readings recorded at a depth of 7 to 13 feet in Borings B-3 and B-6 correspond to a layer of sandy silt between the more typical silty sands.
A finer grained material like the silt layer would be less permeable and tend to retain a greater Fr. 2. TABLE 2 SOIL BORING FIELD SCREENING DATA MAY 23, 1989 | HNu | Meter | Reading | |-----|-------|---------| |-----|-------|---------| | | | | Vr | pm | | | |--|------------|-----------------------------------|------------|---------------------------------|---------------------------------|--------------------------| | Depth Interval (ft) | <u>B-1</u> | <u>B-2</u> | <u>B-3</u> | <u>B-4</u> | <u>B-5</u> | <u>B-6</u> | | 0.0 - 2.5
2.5 - 5.0
5.0 - 7.5
7.5 - 10.0
10.0 - 12.5
12.5 - 15.0
15.0 - 17.5
17.5 - 20.0
20.0 - 22.5
22.5 - 25.0
25.0 - 27.5
27.5 - 30.0
32.5 - 35.0
35.0 - 37.5
37.5 - 40.0 | 1.8 | 0.4
0.0
0.6
1.2*
2.1* | 0.6 | 0.0
0.0
0.1
0.0
0.0 | 0.4
0.0
0.2
0.6
0.0 | 0.6
1.2
18.6
62 | | - · · | | | | | | | Depth to ground water interface at B-3 was 37 feet and 7 feet at B-6. Meter interference resulting from increased moisture content of soil. Readings most probably are a result of soil moisture. portion of compounds migrating through the unsaturated zone than the sands found above and below this layer. A total of seven composite soil samples from the initial six borings were submitted for laboratory analysis. These samples consisted of "bottom of the boring" samples taken from Borings B-1, B-2, B-4, B-5, and B-6; a sample taken from the 7.5 to 10interval in Boring B-3; and a sample taken from the 2.5 to 5-foot interval in Boring B-2. No detectable concentrations of volatile organic compounds were found in any of the soil samples submitted for laboratory analysis, however, the method detection limits achieved by the laboratory were 1 ppm or higher. As a result, a degree of uncertainty remains as to the extent and concentration of materials in the areas identified by the soil gas survey. It does appear, however, that any materials present are at sub-part-per-million concentration for gasoline components and organic solvents. The complete laboratory report covering these samples is presented in Appendix B. Information characterizing soils in the immediate vicinity of the facility's underground storage tanks was obtained on two separate occasions. The initial steps of Suntec's Program to close all underground tanks was conducted by Fehr-Graham & Associates and had included the collection of samples directly beneath the individual tanks. The presence of volatile and semivolatile organic compounds in several samples was the basis for Suntec making the notification of potential release to the IEPA on February 9, 1989. Table 3 contains the analytical data obtained from these samples and is presented for purposes of comparing data from the more recent nine borings. As noted, the subsequent nine borings were intended to characterize materials in the immediate vicinity of the tanks. The analytical data obtained from the samples taken in the final nine borings are presented in Table 4. The data are arranged so that the underground tank corresponding to each boring location is identified. The complete laboratory report covering these samples is presented in Appendix B. The following discussion compares the data contained in Tables 3 and 4 and draws conclusions based on this comparison. The Fehr-Graham Sampling Program indicated that low levels of semivolatile compounds may exist in the vicinity of Tank No. 1. The second sampling program confirmed that low levels of semivolatile compounds may exist in the vicinity of Tank No. 1. According to Suntec personnel, in recent history, this tank has contained "white gas", a material not containing appreciable levels of semivolatile organic compounds. If semivolatile compounds are present, they may be a result of asphaltic coating on the tank. The Fehr-Graham Program identified the presence of gasoline constituents under Tank No. 4. Historically, this tank has held gasoline. The second sampling program did not demonstrate the presence of the same components in the vicinity of Tank No. 4. While the high levels of toluene, ethyl benzene and xylene compounds found in the initial sample are consistent with soil contamination resulting from leakage or spillage in the vicinity of a gasoline storage tank, the second sampling indicates that lateral migration of contamination is very limited. With regards to Tank Nos. 5 and 6, the Fehr-Graham Program recorded concentrations of volatile and semivolatile compounds that can be components of both fuel oil and asphaltic tank coatings. The second sampling identified relatively insignificant concentrations of semivolatile compounds in the vicinity of Tank Nos. 5 and 6 and no volatile compounds. A release of fuel oil from these tanks would most likely have TABLE 3 ANALYTICAL DATA FOR UNDERGROUND TANK BACKFILL SAMPLES | Underground Storage Tank Number | | | | | | | | | | | | |---------------------------------|--|--|--|------------------------------|---|--|---------------|------------------------------|---------------------
--|---------------------------| | 1 | 4 | . <u>5</u> | <u>6</u> | I | <u>8</u> | 2 | 10 | 11 | <u>12</u> | <u>14</u> | <u>16</u> | | <0.005 | 160 | ·
<2 | 7.5 | <2 | <5 | <0.5 | <0.5 | <5 | <1 | <0.005 | <0.005 | | <0.005 | <10 | <2 | < 5 | 7.7 | 7.8 | 0.5 | <0.5 | <5 | <1 | <0.005 | <0.005 | | <0.005 | 170 | <2 | <5 | 2.2 | <5 | <0.5 | <0.5 | <5 | <1 | <0.005 | <0.005 | | <0.005 | <10 | 5.9 | <5 | 4 | <5 | 1.2 | <0.5 | <5 | <1 | <0.005 | <0.005 | | <0.005 | <10 | <2 | <5 | 19 | 15 | 3.3 | <0.5 | <5 | <1 | <0.005 | <0.005 | | <0.005 | 520 | <2 | 49 | 4.6 | 9.3 | <0.5 | <0.5 | 34 | <1 | <0.005 | <0.005 | | | | | | | | | | | | | | | <5 | NA | <5 | 6 | < 5 | <250 | <500 | <200 | 13 | 9 | <1 | <50 | | <5 | NA | <5 | <5 | <5 | <250 | <500 | <200 | 8 | 6 | <1 | <50 | | <5 | NA | <5 | <5 | <5 | <250 | <500 | <200 | 19 | 12 | <1 | <50 | | <5 | NA | <5 | <5 | <5 | <250 | <500 | <200 | 16 | 12 | <1 | <50 | | <5 | NA | < 5 | 9 | <5 | <250 | <500 | <200 | 6 | <5 | `<1 | <50 | | <5 | NA | < 5 | <5 | <5 | <250 | <500 | <200 | 5 | 11 | <1 | <50 | | <5 | NA | < 5 | <5 | <5 | <250 | <500 | <200 | 8 | 6 | <1 | < 5 | | <5 | NA | <5 | < 5 | <5 | <250 | <500 | <200 | 6 | <5 | <1 | <50 | | 5 | NA | 7 | 8 | < 5 | <250 | <500 | <200 | 26 | 24 | <1 | <50 | | < 5 | NA | < 5 | <5 | <5 | <250 | <500 | <200 | 6 | < 5 | <1 | <50 | | <5 | NA | 5 | 5 | <5 | <250 | <500 | <200 | 21 | 10 | <1 | <5 0 | | <5 | NA | 7 | 12 | <5 | <250 | <500 | <200 | 21 | 18 | <1 | <50 | | | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | <0.005 160 <0.005 <10 <0.005 170 <0.005 <10 <0.005 <10 <0.005 520 <5 NA | <pre><0.005 160 <2 <0.005 <10 <2 <0.005</pre> | <pre><0.005 160</pre> | 1 4 5 6 7 <0.005 160 <2 7.5 <2 <0.005 <10 <2 <5 7.7 <0.005 170 <2 <5 2.2 <0.005 <10 5.9 <5 4 <0.005 <10 <2 <5 19 <0.005 <10 <2 <5 19 <0.005 520 <2 49 4.6 **S NA <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 NA <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | 1 4 5 6 7 8 <pre> <pre> <pre> 1 4 5 6 7 8 </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre> | 1 4 5 6 7 8 9 | 1 4 5 6 7 8 9 10 <pre></pre> | 1 4 5 6 7 8 9 10 11 | 1 4 5 6 7 8 9 10 11 12 <0.005 160 <2 7.5 <2 <5 <0.5 <0.5 <5 <1 <0.005 <10 <2 <5 7.7 7.8 0.5 <0.5 <5 <1 <0.005 <10 <2 <5 7.7 7.8 0.5 <0.5 <5 <1 <0.005 <10 <2 <5 2.2 <5 <0.5 <0.5 <5 <1 <0.005 <10 <2 <5 2.2 <5 <0.5 <0.5 <5 <1 <0.005 <10 <2 <5 10 <2 <5 1.2 <5 <0.5 <0.5 <5 <1 <0.005 <10 <2 <5 10 <2 <5 19 15 3.3 <0.5 <5 <1 <0.005 <10 <2 <5 19 15 3.3 <0.5 <5 <1 <0.005 <10 <2 <5 19 15 3.3 <0.5 <5 <1 <0.005 <10 <2 <5 19 15 3.3 <0.5 <5 <1 <0.005 <10 <2 <5 19 15 3.3 <0.5 <5 <1 <0.005 <10 <2 <5 <1 <0.005 <10 <2 <5 <1 <0.005 <10 <2 <5 <1 <0.005 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | 1 4 5 6 7 8 9 10 11 12 14 | All units are mg/kg. NA - not analyzed. TABLE 4 ANALYTICAL DATA FOR SOIL BORINGS Boring Number/Tank Number | | B-7/1 | B-8/4 | B-9/5,6 | B-10/17,18 | B-11/7,8,9,10 | B12/11 | B-13/12 | B-14/13 | B-15/Chip Room | |--------------------------|----------------|------------------|----------------|----------------|----------------|---------------------|------------------|----------------|------------------| | Sample Depth (ft) | 4-6 9-11 14-16 | 1 4-6 9-11 14-16 | 4-6 9-11 14-16 | 4-6 9-11 14-16 | 4-6 9-11 14-16 | 4-6 9-11 14-16 | 4.5-5.5 9.5-10.5 | 4-6 9-11 14-16 | 1 4-6 9-11 14-16 | | | ľ | 1 | 1 | ! | | 1 | l | | 1 | | Volatile Organics | ! | 1 | ! | 1 | l | 1 | 1 | 1 | t | | | 1 | | | | | ! | 1 | | 1 | | Benzene | } | 1 | ! | | * | * * | 1 | | 1 | | Ethyl Benzene | | | ! | | * | * | | | | | Toluene | | | į | | * | * | | * | ļ | | Xylenes | | 1 | | | 8000 | 1100 6600 | 22000 9800 | 9000 3200 | 1 | | Methylene Chloride | 12 11 12 | 11 | 9.7 | ' | | | | | 1 | | Methyl Ethyl Ketone | | Ì | | | |] |] | | 1 | | Dichlorodiflouoromethane | 3 5 | 10 | 8.9 | 11 18 | 3300 | | ! | | Į. | | Trichlorofluoramethane | | 1 | | 12 | | ! | (| | Į. | | 1,1,1-Trichloroethane | | 1 | ! | + | 62000 | 54 1400 | ! | | 1 | | Trichloroethene | | 1 | l i | | 38000 | 1600 | i | ľ | 1 | | Tetrachloroethene | | 1 |
 | | 25000 | 280
 | <u> </u>
 | 1500 | 1 | | Sami-Volatile Organics | | | | | | | | | | | Benzo(a)anthracene | * | !
! |
 * | | 54 61 |
 140 70 * |
 150 * | * | !
 * | | Benzo(a)pyrene | * | į į | | | | * * | * | | i * | | Benzo(b)fluoranthane | * | 1 | * | | * | * * | * | | * | | Benzo(g,h,i)perylene | | 1 | | İ | j | j | | | 1 | | Benzo(k)fluoranthene | * | l Ì | İ | · | | * * | , * j | | i * | | Fluoranthene | | l | į | | Í | * * | İ | | i | | fluorene | | İ | İ | ļ | * | | į | | İ | | Indeno(1,2,3-Cd)pyrene | | ·
} | i | · j | Ì | ·
 | i | | i | | Napthalene | | j i | İ | i | * | * | * 1 | | i | | Phenanthrene | | i i | j | i | *] | | | | i | | Pyrrene (| | i i | i | i | * j | * * | i | | i | All units are ug/kg, blanks indicate less than method detection limit. ^{*}Estimated result. Result less than 5 times detection limit. resulted in soil semivolatile concentrations in excess of those recorded in the sampling programs. According to employees who have worked at the site for the past two decades, waste Stoddard Solvent, a mineral spirits-type solvent containing non-halogenated compounds, had been added to fuel oil contained in Tank Nos. 5 and 6 for burning in the facility's boilers. This practice was discontinued prior to the effective date of regulations prohibiting waste solvent burning for space heating. Therefore, the data does not support the conclusion that a release of fuel oil occurred from these tanks. The Fehr-Graham Sampling Program did not include the active fuel oil storage tanks, Tank Nos. 17 and 18, because Suntec was not considering closure of these tanks. Suntec is now considering closure. The data obtained from the second program indicates that no volatile or semivolatile compounds are present above detection levels of 5 ppb in the vicinity of these tanks. The Fehr-Graham Sampling Program indicated the presence of chlorinated and non-chlorinated volatile compounds in the area containing Tank Nos. 7, 8, 9 and 10. These tanks were used to store machining oil for use in the manufacturing process. The second sampling program confirmed the presence of these volatile compounds. Chlorinated and nonchlorinated volatile organics are not known to be components of the machining oils used at Suntec. A release of machining oils from these tanks would most likely have resulted in soil semivolatile concentrations in excess of those recorded in the sampling programs. A program was implemented in 1984 to remove soils in the area immediately south of the Oil Room contaminated by housekeeping-type surface spills from scrap chip roll-off boxes. Data developed during this cleanup indicated that the same chlorinated and nonchlorinated volatile organics were present at depth in levels similar to those recorded in the second sampling program. ERM has not developed information in this investigation to determine if the existing presence of volatile compounds in related to the 1984 program. The available data does not support the conclusion that a release occurred from Tank Nos. 7, 8, 9, and 10. The Fehr-Graham Sampling Program indicated the presence of xylene in the vicinity of Tank Nos. 11 and 12. The second sampling program confirmed that xylene was present in the vicinity of these tanks. According to Suntec personnel, Tank No. 11 had been used to store fresh Stoddard Solvent. Tank No. 12 had been used to store waste Stoddard Solvent. Suntec personnel indicated that the storage of waste solvent in this tank was discontinued prior to the effective date of regulations prohibiting storage of this material in such tanks. Waste solvent was poured into Tank No. 12 from small, portable containers. Fehr-Graham's Investigation and Report indicated
that the area immediately surrounding the tank fill connection was heavily stained. Examination of the data obtained from Boring B-13 of the second program (see Table 4) indicates that the concentration of xylene decreases with depth below ground surface. A contaminant profile such as this, would be consistent with a surface release resulting from overfilling/ spillage rather than a tank release. Since chlorinated volatile organics are not components of Stoddard Solvent, their presence in the nearby area are not indicative of a tank release. Tank No. 13 reportedly was used to store isopropyl alcohol. The Fehr-Graham sampling limited sample analysis to isopropyl alcohol. The second sampling program identified significant concentrations of xylenes, and at depth, tetrachloroethene. There is no evidence that materials stored in this tank had these compounds as constituents. The second round of sampling included a Boring (B-15) located immediately south of the Chip Room to evaluate the potential for chip handling activities as a source of soil contamination. Except for insignificant levels of four semivolatile compounds, no contaminants were identified in these samples. Therefore, the potential for Chip Room activities contributing to soil contamination otherwise identified at this facility is negligeable. ## 3.3 Ground Water Monitoring Monitoring Well MW-A was developed and sampled after installation. Monitoring Well MW-B was bailed dry during development, and no water was present for sampling. Water was present in Monitoring Well MW-A at a depth of 37 feet bgs. The shallow depth (7 feet bgs) of water in Monitoring Well MW-B coupled with the lack of well recharge indicates that this well was completed in a perched zone of saturation, rather than a continuous ground water interface. A sample of ground water obtained from MW-A was submitted for laboratory analysis of volatile compounds and isopropyl alcohol. The analytical data obtained from this sample are summarized in Table 5. The complete laboratory analytical report is given in Appendix B. Table 5 presents concentrations for only those compounds present above the method detection limits. The laboratory testing indicated that chlorinated solvents, primarily trichloroethene (TCE) and its related breakdown products, were present in the ground water sample. No additional ground water sampling from new or existing monitoring wells was performed as part of the Phase II Investigation, but further ground water testing is recommended. Ground water quality data obtained during the 1984 cleanup activities, however, documented that these compounds were present in ground water entering the 10 ## TABLE 5 ## GROUND WATER ANALYTICAL DATA MAY 23, 1989 | <u>Parameter</u> | Concentration, ug/l | |-------------------------|---------------------| | Chloroform | 2.8 | | 1,1-Dichloroethane | 143 | | 1,1-Dichloroethene | 1.6 | | cis-1.2-Dichloroethene | 318 | | trans-1,2-Dichlorothene | 2.6 | | Tetrachloroethene | 62 | | Trichloroethene | 118 | Harrison Avenue facility, at the east side, as well as in ground water near to the location of MW-A (MW-1 on Figure 2). As part of the final series of borings described in Section 3.2, ERM obtained a sample of liquid remaining in Tank No. 11. It is assumed that this liquid is wash water not completely removed during tank cleaning. Laboratory analysis of this liquid measured 1500 ug/l xylenes and 670 ug/l methylene chloride. The Fehr-Graham Report covering the initial tank closure activities stated that a sludge-like material was present in Tank No. 11 at the time of cleaning. This sludge was removed, analyzed and disposed as an ignitable hazardous waste. The entire volume of sludge removed from the tank was less than 55 gallons. The presence of a liquid containing xylene in this tank is consistent with the earlier sludge removal and tank cleaning, as well as information regarding the tank. #### 4.0 SUMMARY AND CONCLUSIONS The Phase II Investigation used a followup soil gas survey and a total of 15 borings to determine the horizontal and vertical extent of soil migration in the area of the facility's underground storage tanks. The initial and followup soil gas surveys identified the horizontal boundaries of two principal areas of concern: (1) an area extending 25 feet radially from the Flammable Liquid Storage Building's northern and western walls; and (2) a larger area extending from approximately the Oil Room to the Chip Room, bounded by the western property line and the main facility building. Laboratory analysis of soil samples obtained from a series of soil borings located in these areas indicated that any materials present are at a sub-part-per-million concentration for gasoline components and organic solvents. Two soil sampling programs provided more complete information on contaminant levels in the immediate vicinity of the individual underground tanks. Based on this information, a release most likely occurred at Tank No. 4. However, no significant horizontal migration has appeared to have occurred. The information also indicates that subsurface contamination exists in the vicinity of Tank Nos. 5, 6, 7, 8, 9, 10, 11, 12, and 13. The presence of xylene around Tank Nos. 11, 12 and 13, as well as a lesser amount under Tank No. 6 may have been caused by Stoddard Solvent transfer. There is no indication any of the tanks around which chlorinated solvents were found, particulary Tank Nos. 7, 8, 9 and 10, ever held chlorinated solvents and the data does not otherwise support à conclusion that a release has occurred from these tanks. A ground water sample obtained from Monitoring Well MW-A contained trichloroethene and its breakdown products. #### 5.0 RECOMMENDATIONS ERM recommends that a three-phased program be used to complete the closure of the facility's underground storage tanks. These phases are: (1) a ground water investigation; (2) an investigation of potential soil remediation techniques; and (3) tank removal or closure in-place. The ground water investigation will utilize all existing wells to develop data on the characteristics of site ground water quality and flow direction. Information obtained in this investigation will permit the assessment of the degree of impact, if any, that releases from facility underground tanks have had on local ground water quality. Three monitoring wells were installed in 1984, two along the east end and one along the west where ? come. a partial. end. A fourth monitoring well was installed as part of this investigation. Three additional monitoring wells will be installed in the locations shown in Figure 3 to better characterize ground water quality at the facility. Information on site ground water quality, an assessment of any impacts and recommendations for additional actions will be presented in an Investigation Report. It is expected that the three additional monitoring wells can be installed and developed by October 27th. Sampling of all monitoring wells should be completed by November 3rd. Laboratory analysis for volatile and semivolatile organic compounds should be completed by November 30th, with submittal of the Investigation Report by December 15th. Defet The soil remediation investigation will examine potential methods for "source elimination", in-situ remediation of contaminated soils. Soil ventilation appears to be one potential "source elimination" method because of the concentration and type of compounds identified. ERM will prepare a Remedial Action Work Plan presenting design information for the selected soil remediation method and the proposed soil cleanup levels incorporating IEPA's most recent guidelines, for submission to IEPA at the completion of this investigation. It is expected that the soil remediation investigation and preparation of the Remedial Action Work Plan can be completed by November 30th. Implementation of the proposed remedy will follow approval of the Work Plan by IEPA. Tank removal and final closure activities will be implemented as soon as possible. The determination as to which tanks will be excavated or closed in-place will be made based on all available information. The appropriate permits will be obtained from the Illinois State Fire Marshal's Office prior to closure. ERM Od 4. 989 De 2011 the sent APPENDIX A OKILLING LUG | | Proj | ject _ | Su | nte | owner <u>Sunten</u> | |-------|----------------|--------------|---------------------------------------|-------------|--| | | | | | | ford W.O.Number <u>7059</u> | | | Bort | ehole h | Number | | $\beta-1$ Total Depth 7.3^{-1} Diameter 7^{-1} | | | Dri: | lling (| Compar | ny <u>F</u> | ox Prilling Drilling Method Hollow Stem Buger | | | Samp | oling N | 4ethoc | برکند ا | olit Choon Log By MER Date Drilled V-13-13 | | | | | | | | | | | | | | | | 王 | | ξ | (wdda) | ple | DESCRIPTION/SOIL CLASSIFICATION | | ОЕРТН | 표 | BLOWS | ₹S | S a | Color, Texture, Structures | | | |
 | | | Asphalt & Basecourse | | | | - 8 - 12 - S | , , | Λ | - | | - | | | 1.8 | 17 | Fill, sm- sand. Silty, gravelly, brown, moist, moderately Dense 25' Lenses of Black Silt | | | | 32 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | B | 5P - Sand, very slightly silty, brown, very moist, Loose,
medium to Fine grain size | | | | 2 | 0.4 | B | medium to Fine grain size | | -) | | 32 | | | | | | | 2 | 0.0 | C | 5m - Sand, very Silty, dark brown, very maist, Laose | | | | 2 | | | | | | | | | | Bottom of Boring | | 10- | | _ | | | | | ' - | | _ | | | | | | | _ | | | | | | | _ | | | | | | - - | _ | | | | | | | - | | } | | |] - | | _ | | | | | } | | - | | | | | | | - | | | | |] - | | - | | | | | - | | | | | | | | | _ | | } | | | | | | | | | | | | | | <u>}</u> | · | | | | _ | | | | | | | _ | | } | | | } _ | | _ | | | | | _ | | - | | | | | |
Project _ | <u></u> | nte | Owner Sun ec | |-------------|-------------|--------------|------------------|--| | | Location | | 90c | w.o. Number: 90.59 | | | well Numbe | er | 174 | $\sqrt{3/3-3}$ Total Depth $\sqrt{40}$ Diameter $\sqrt{7''}$ | | | | | | lo Datum Water Level: Initial 37 24-Hrs | | | | | | 2" Length 5" Slot Size 9.01 | | | Casing: 1 | Dia _ | ₂ 2 | Length 40 Elevation Flush Mount Type PUC | | | | | | -ox Orilling Drilling Method Hollow Stem Auger | | | | | | Dit Spoon Log By MER Date Drilled 5-24-89 | | | | | • | | | | | 1 | | | | | | | ยะ | DESCRIPTION/SOIL CLASSIFICATION | | DEP 7.H | BLOWS | HNU (Nppm) | Sample
Number | Color, Texture, Structures | | | E B | E. | o z | Page 1 of 2 | | | | | | Aspiait & Baseccarse | | | 7 | | | 15' | | | 8 | 1.7 | A | ML - Silt, Sandy, Black, Stiff, Slightly moist | | | 33 | 2.6 | B | SP-sand, Slightly Silty, Reddish Brown, Moist, Loose to | | | 3 6 | 2.6 | | Brown, medium to fine grain size | | 13 — | 3 4 | | | · | | | 8 | 0.6 | C | | | | 16 | | | | | | 7 | 124 | | | | | 11 | 127 | D | 9.5° | | 10 | 7 | | | SM-ML - Alternating lenses of Silty Sand and Sandy Silt, Gray, moist, Stiff, Dieseloil Smell | | | 1,4 | 150 | E | moist, spin , seser our and | | | 14 | <u> </u> | | | | | 6 | 8.1 | - | 13.5 | | | 15 | 0.1 | F | SP- Sand, very slightly silty, Light Brown, Slightly moist, | | ^> | 10 | | | fine to medium grain size | | | 160 | 1.7 | G | · | | +- | 35 | - | | | | +- | 13 | 1.8 | | | | | 176 | 1.2 | H | | | 20 | 10 | | | | | | 14 | 1.2 | I | | | | 23 | | | | | | 107 | 0.8 | 7 | | | 120 | 19 | 0.0 | 3 | 29.6 | | 25 | 10 | | | ML-SM - Lenses of Silt and Silty Sand, Light brown, moist towet, Skiff,
26.0 3" Saturated zone from 25.7" + 26" | | | 21 | 1.2 | K | SP - Sand, very slightly silty inplaces, light brown, slightly moist, | | | 7 | | | dense to very dense , fine to mediam grain size | | | | | | | | | Pro | ject _ | Su | ats | Owner Suntec | |-------|----------------|--|---------------|-------------|--| | | | | | | 4 ford W.O. Number 7057 | | | Bor | ehole h | vumber | <u>_</u> | 3-4 Total Depth 12.5 Diameter 7" | | | Dri. | lling (| Compan | iy <u>;</u> | ox Orilling Drilling Method Hollow Ston Auger | | | Samp | oling M | dethoo | ثيرتك ا | lit Spoon Log By MER Date Drilled 5-24-89 | | | | | | | | | | | | | | | | ТH | | SE | HNU
(Vppm) | ple | DESCRIPTION/SOIL CLASSIFICATION | | ОЕРТН | £ | BLOWS | ₹S | Sar | Color, Texture, Structures | | | | | | | Asphalt & Basecoarse | | _ | | 3 | 0.0 | A | ML-CL - Silt and Clay lenses, very sandy, Black, Moist, soft | | _ | | 7 3 3 | 15.5 | | 5P - Sand, brown, Slightly Moist, Moderately dense, fine | | _ | | 3 | 0.0 | 0 | | | 5- | | 6 | 0.0 | | | | _ | | 7.07.16 | | 0 | | | _ | - | 10 | 2.1 | C | 2'silt seam very moist | | - | - - | 1/4 | | _ : | | | - | | 10 | 2.0 | D | | | 10 - | | 8 | | | | | | | _ , _ | 0.0 | E | | | - | | 16 | - | | 12.3 's" 14 Seam . | | | | | | | | | 15 - | | _ | | | Bottom of Boring | | _ | | - | | | | | - | | - | | | | | ÷ | | - | | | : | | _ | | - | | | | | _ | | - | | | | | _ | | - | | | | | _ | - - | | | | | | _ | | | | | · | | | | | | | | | | | _ | | | | | _ | | _ | | | | | - | | - | | | | | _ | - - | - | | | | | _ | | + | | | | | _ | | _ | | | | | _ | - | | | | | | _ | - | | | | | | DESCRIPTION/SOIL CLASSIFICATION Color, Texture, Structures Darse Lenses of Sity Sand and Sandy Clay, B Moist, firm | |--| | Color, Texture, Structures | | | | Lenses of Sity Sand and Sandy Clay, B | | moist, firm | | Light Brown, Elightly Moist, Loose to | | o medium grainsize | | | | | | | | esof Silty Sandond Sundy Silt, Lightbrown, mo | | ht Brown moist, moderatly dense | | ing | | <i>∂</i> | • | a section of the sec | | Pro | ject _ | Su | ent | ec Owner <u>Suntec</u> | | |---|------------------------------------|----------------|--------|-------------|---|--| | | | | | | rford W.O. Number: 3057 | | | | w-6/0-6 Total Depth // Diameter 7" | | | | | | | Surface Elevation No Datam Water Level: Initial <u>S.o</u> 24-Hrs | | | | | | | | | Scr | een: (| Dia _ | | 2'' Length Slot Size | | | | Cas: | ing: (| Dia _ | 2 | Length 2 Elevation No Dotum Type Puc | | | | Ori | lling (| Compar | ny <u>/</u> | Drilling Method Hollow Stem Auger | | | | | | | | plit Spoon Log By MER Date Drilled 5-25-89 | | | E | | MS | (Vppm) | Sample | DESCRIPTION/SOIL CLASSIFICATION | | | ОЕРТН | £ | BLOWS | 圣 | Sam | Color, Texture, Structures | | | <u> </u> | <u> </u> | - | | | Top Soil - Silt + Roots | | | - | | - 4 | | 1 | 105 | | | _ | - | 9 | 0.6 | A | dork brown, maist, Stiff | | | | | 3 | | | | | | | - | 10 | 1.2 | B | | | | 5- | - | 12
2
5 | | - | water - small sand stringers | | | | ├
 | -5-
-5- | 18.6 | C | SP- Sand, Gray, very moist to wet, Laose to Maderathy dense | | | | | <u> </u> | _ | | fine to medium grain tize | | | _ | | 2 | 1 | | prince it - | | | | | 2 4 | 62 | U | 9.5' ML-Silt, very sandy, grayish green, wet, firm to stiff | | | 10 - | | | 1 | | 10-0 | | | | _ | | | | Bottom of Boring | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | <u></u> | | | | | | _ | | | | | | | |] | | _ | | | | | | | | | | | | | | _ | | _ | | | | | | _ | | _ | | | | | | _ | - - | _ | | | | | | _ | | - | | | | | | - | | - | | | | | | _ | - | - | | | | | | - | - - | - | | | | | |] - | - - | _ | | | | | | | ERM-NORTH CENTRAL, INC. CRILLING LOG | | | | | | | |--|---|--|--|--|--|--|--| | | Turbustaies owner Sunter Industries | | | | | | | | Location Rock f | | | | | | | | | Borenole Number | Sorenole Number 58/ total Depth 16.0 Diameter 51/2 | | | | | | | | Orilling Company 🔨 | Aimoreta Deilling Orilling Method 314 I.D. HS- Augal | | | | | | | | Sampling Method <u>2</u> | "x2 Split Samuelog By D.P. Edwark Cate Orilled 7-24-89 | = 1 2 2 S | DESCRIPTION/SOIL CLASSIFICATION | | | | | | | | DEPTH Record Record Record (Vppm) (Vppm) | Calor, Texture, Structures | | | | | | | | N.K. | | | | | | | | | | Dark beaux, pockly scated clayer in sand w/ Rootlets, | | | | | | | | / — — | moist, 10 odor (Topsol) | | | | | | | | | Light beau, pools souted, V. lase, for med sand with | | | | | | | | 2 — | TR. CR SAND (10%) AND (4 years (273), NO booding, | | | | | | | | | No odok, moist (F.11) | | | | | | | | 3 | | | | | | | | | ++11 | | | | | | | | | 4 | 1 | | | | | | | | \(\frac{1}{2}\frac{1}{2}\) | | | | | | | | | 5-13-10-3 | | | | | | | | | 1 1 2 0 88.8 S. A. | 5.8 | | | | | | | | 6 1 3 | Light beown, mod. well society loose, ut - for said No | | | | | | | | + + | bedding, to odoe, day. | | | | | | | | 7 + + | any. | | | | | | | | ´ | | | | | | | | | s — — | SAND, NO bedding, No oclar, moist. | | | | | | | | + + | soul up bollow up polor most | | | | | | | | 9 | SAPA, NO DECENTED, NO COLON, MOIS. | | | | | | | | 1 | | | | | | | | | 10 14 0 3 | | | | | | | | | T = 10 0 | | | | | | | | | // 12 5 | | | | | | | | | ´ | | | | | | | | | 12 | | | | | | | | | | | | | | | | | | 13 | Light beauns well socted, Med Jerse, Med for SAIR w/ TRACE | | | | | | | | · | UF SAND, hove. laminoted, occ. TE OX string, dex. | | | | | | | | 14 | | | | | | | | | 14 0 350 | | | | | | | | | 15+51-15 | | | | | | | | | 3 2 32 0 38 | Light beaun well exeted, dense silt occ. Fock stain wet. | | | | | | | | 32 88 | hight become, well speted, dense, med-fu sand u/ te. ut sand, | | | | | | | | | Signify West | | | | | | | | | End of Boring 16,0' | | | | | | | | ERM_NORTH CENTRAL, | 1 . | |---
---| | _ | Titustaies owner Suntec Livilustries | | Location Rock f | | | Earenale Number | | | | Amounds Deilling Deilling Method 314" I.D. HS- August | | Sampling Method 2 | "x2 Spit Saur Log By D.P. Edward Date Orilled 7-24-89 | | | | | TEPTH Thyple Recuring Recuring Recuring HALL (Vppm) Sample | CESCRIPTION/SOIL CLASSIFICATION Color, Texture, Structures | | 2 / 2 / B E N S | | | | al' Asphalt | | / - + | 0,9' Light become, poorly sorted, for sandy force grave, clay (Aggregate base) | | 2 — — | DARK secure poorly sorted, clay w/ in said & gravel, | | 3 | Reddish beown, well social, losse, for sand, No beckling | | 4 | No coder, moist. | | 4 /2 | | | 5 7 3 0 5 | | | | | | 6 2 5 | P. M. M. J. A. M. J. A. M. J. A. | | + + | Reddish beown, Mal. x//scetad, lose, fu-ned sand, no bedding | | 7++ | No odok, moist. | | 8 T T | Light beown, Medium dense, well safted silt, hor. laminated | | | NY color saturated to 1 - Aller U 11 + 1 1 0 | | 9 | SAHO, has laminated per FOX stain most | | 1 10 8 | SAND, har. laminated, occ. FEOX stair, moist. | | 10 1/9 0 0 | | | 127 SZ | light beour, very clarse, well social, for savel ul tence wel | | 11 3 | Light beour, very classe, well souted, for savel of trace med. SAND, OCC. FEOX STAIR, moist. | | + + | | | 12++ | | | + + | light beautiful to the distribution of the | | 13 🛨 🛨 📗 | Light brown, well satted, dense, silt, bacizontally laminated, No oclor, moist. | | | | | 19 3 | | | 15 7 20 3 | Light beown, well social, dense for sound, hoe. Imm. wated, NO | | 3 E 28 0 28 | odor, day this silt beet, moist. | | 18 32 3 | Light beaux, well scoted, deuxe silt, have lam., No color, saturated. | | ++ | Exet of Baring 16.0' | | Project Surfec Takestries Owner Surfec Takestries Location Rock ford IL W.O.Number 9155 JK Extension Number 583 Otal Depth 16,0 Diameter 5/2 Crilling Company Rainwoods Deilling Orilling Method 3/4" I.D. HS-August Sampling Method 2"x2" Solf Samplog By D.P. Edwards Date Orilled 7-24-89 | | | | | | |--|----------------|---------------|------------|---|--| | DEPTH 54 | Recorder BLOWS | HNu
(Vppm) | Sample | | | | / - | + | | | Light brown, poorly sorted, fu-ce sand w/ tence cr. gravel, no odor dry (Aggregate Base) | | | 3 + | | | | DACK brown, posely sorted clavey for Hed. SAND, 100 odok, No bedding, moist (backfill). | | | 5 | 3 | 0.0 | SB3A 1320 | Light beaut, made well socted, loose, for sand w/ teace clay i for grave, is bedding, no odar, moist (backfill) | | | 7 - 8 - 9 | | | | Light Seown, well sorted neclium close, for & vf sand horizontal to low Augle stratification alternating for sand And of sand laminate, occ. FEOX stain, No color, moist. | | | 10 11 | 13 14 24 | 0,0 | SB3/3 /335 | THE OF SHIP HAMINHE, DEC. FECK STAIN, NO Odde, Moist. | | | 13-14 | | | 342 | Light brown, deuse, interpreded silt w/ trace of sand
And fort said well sorted by laminate, horizontally
laminated, No odor, wet silt, moist sand. | | | 15 | 31 | 0.0 | 5836 1 | Light brown, well sorted dense, for sand, horizantally laminated, 100 odor, dry. End of Boring 16.0' | | | ERM-NORTH CENTRAL, INC. | CRILLING LOG | |--|--| | Project Surtec Titlesteres | Owner Suntec Luchustries | | | W.O.Number 9155 JK | | Sorenole Number 584 otal Depth | 16.0 Diameter 51/2" | | Orilling Company KAIMOUSCHE DRIlling | Orilling Method 34 L.D. HS- A. C.P. | | Sampling Method 2"x 2" Salt Samue Log By 2 | P. Edwark Date Orilled 7-24-89 | | , | | | | | | - 10 00 | DESCRIPTION/SOIL CLASSIFICATION | | DEPTH PROPERTY (VPDM) Sample Number | Color, Texture, Structures | | | | | - O.3 Aspiralt | | | 1 - Light heavy and | o odce, dry (Aggregate BASE) | | tones de const | SCRIED, FU-CR SAIND W/ SOME CLOY HAND | | 1 RACE CR. GRAVET, D | o odul, dry (AggREGATE BASE) | | 2 - Dack beauty soul | - + 1 C | | CR. GRAVE 1 122 0 | sopted, formed sandy clay w/ tence, moist (fill) | | 3 - J So octor | Ch ///! | | 11-11 how well | 21 1 1 0 | | 4 3 2 Light BROWN WELL | speted, medium diense, for sand, No (back fill) | | TOTAL S DECOMES NO oclose | (back 4/1) | | 5 18 0 8 | ' | | 1/8 0 28 | | | 6 | | | + + | | | 7十十 | | | 1 | | | 8 - Ingat beviers, 1000 as | Ell sopled, ned danse, for- ut sand w/ | | Some SIT hoe. IAM | minated, oce, FEOX stain, No odoz, | | 9 moist. | , | | +3-+1/2 3 | | | 10 to 10 S To Lord her well | +12 0 1 | | N 25 0 3 Light Blown, WELL. | SOCIEU, dense, to sand, hor Aminated | | 11 32 3 No odde, day. | socted, dense, for sand, hor. laminated, | | - + | | | 12 | | | + + | | | 13+ + Lt. beaux med den | 8 0-1/2 to 1 1 1 1 1 1 1 | | - w/ work well to | se, well solled, med, sand interbedded | | nec FCO eta | 5. If w/ TR. Vt SAIN, hor, JAMILLATED | | 1/0 8 000. 18 0x 3/Min De | se, well socied, med, sand interbedded is silt w/ tr. vf sand, hor. laminated, o odor, wet silt, day sand. | | 15 0 2 | , | | 13 20 0 2 | | | 28 8 | | | Eind of Boling 16. | 0' | | | | | | ERM_NORT | | |) DIVITALING COO | |----------|-------------|---------------|--------------|--| | | | _ | | Industries Owner Sinter Industries | | | | | | cecl II W.O.Number 9155 TK | | | Corenole | Numbe | F | 70tal Depth 15,0' Diameter 3" | | | Drilling | Сопра | ny <u>Z</u> | PH-N.C. Drilling Method 3" Harry Augge | | | Sampling | Metho | ک_ ہ | " Harry Auger Log By D. P. Edwards Date Drilled 7-25-89 | | | | | | | | DEPTH | pH
BLOWS | HNL
(Wppm) | Sample | DESCRIPTION/SOIL CLASSIFICATION Color, Texture, Structures | | <u> </u> | 4 | | | Reinforced Concrete | | 1 - 2 - | | | | Yellowish beaux, pooch, societed, fu-er sand w/ some fu & cr. yeavel NO odor, NO bedding, moist (Aggregate Base). | | 3 - | ! | | | SAIN I CR. GRAVEL, STRONG SOMENT who we want | | 4- | | | • 0 | DARK brown to black, pookly sorted, clayer fine to med. SAINCR W/ TR. GRAVE, STRONG odor, moist. | | | 1/2 | 0.0 | 5354 | Reddish brown, well souted, for sAnd w/ tr. Medcr. SAND, strong solvent odur, moist, | | 7 | | | | • | | 9 + | + | | | Buff, interbedded, well speted silt And well speted vf-for sand hor. laminated, slight solvent odge, moist silt, day sand. | | 10 - 3 | W/W | 0,0 | 282 8 | Butf, well sceted, it said, slight solvent ador, day. | | // | | | | | | 12- | + | | | | | B | | | | | | 14 | W/cx | 0,0 | /300 | | | 15 | - | - 1 | ' | | | | | | | and of Boeing 15.0' | | | | | | | | | Project Surfec Trivilles Docation Rock field IL Williams 9/55 JK Sorenole Number 586 Total Depth 16,0' Diameter 5/2' Drilling Company Ramounds Dailling Drilling Method 3'4' J.D. H5-August Sampling Method 2"x2' Split Securous By D.P. Edwark Date Drilled 7-24-89 | |---|---| | | DESCRIPTION/SOIL CLASSIFICATION Calor, Texture, Structures Asphalt Dack beown, poorly screed, clayer force sand w/ tence for fice gravel, stick, solvent oder, | | | - Execuritated
concrete standard (tank saddle) or f. // DARK BROWN, poorly sorted, losse, fu-cr sand w/tence fus cr gravel interbedded with dark brown clay, this laminate, sticky, strong solvent oder, moist, (Fill) | | | | | | 10 0 1 1 1 No RECOVERY, probably more fill. 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | / | 13 32 Septed for of sand, horizontally lamprated, one interbecked strong solvent octor, toust, harizontally laminated, one interbecked strong solvent octor, devise, it interbecked with well softed, devise, silt interbecked with well softed to octor, horizontally bedded, strong solvent octor, devise, silt interbecked with well softed to octor, horizontally bedded, strong solvent octor, horizontally bedded, strong solvent | | / | Steams solvent oder, der. Shoot, horizontally lamina Light beaun, well scoted, cleixe, sitt interbedded with wer Souted fu-vf sand, horizontally bedded, strong solvent 32 Bodor, moist. | | ERM-NORTH CENTRAL, INC. CRILLING LOG | | | | | |--|--|--|--|--| | Project Suntec Industries Owner Suntec Industries | | | | | | Sprenole Number 587 Total Depth //3' Diameter 3'' | | | | | | | | | | | | Sampling Method 3" Hard Augil Log By D.P. Edwards Date Drilled 7-25-89 | | | | | | | | | | | | DESCRIPTION/SOIL CLASSIFICATION Color, Texture, Structures | | | | | | | | | | | | ight, brown, nock will souted, in-ned sand w/ to ut sand | | | | | | GRAY, poorly scretch, for-Hed sand, w/ tr. of sand & cr. gravel, No bedding, v. strong solvent oclor, oily | | | | | | 3 - T Sheep, moist. (Fill) | | | | | | | | | | | | 2-3-3-3-8-5 | 8 - ExcountER piece of wood. | | | | | | 9 + Buff ust of the first | | | | | | Buff, well socted, if for said, is trong solvent odor, | | | | | | B. F.F. well society silt interbedded up well society of - | | | | | | 12 - End of Boring 11.3' due to Auger REfusal. | 15 + + | | | | | | | | | | | | + + | | | | | | ERM-NORTH | | | , | |-----------|-------------|-----------------------|--| | | _ | | Turbustaies suner Sunter Industries | | | | | SD 9 W.Q.Number 9155 JK | | Borenole | | | | | Stilling | Compa | my <u>^</u>
2 | Aimorode Dailling Defilling Method 3"4" I.D. H5- August "x2" Salt Samuelog By D.P. Eclarack Date Orilled 7-25-59 | | sampling | mecno | | AZ JAN JAN Log By D. F. Eclwark Sate Utilien 7-23-37 | | | | , | | | 10 00 | | | DESCRIPTION/SOIL CLASSIFICATION | | DEP III | (Mcddy) | ampl
Limbe | Color, Texture, Structures | | 3 3 10 2 | 120 | 10, 2 | | | / - + | | | hight brown, mod. sorted, for-med sand w/ tr. cr. gravel, No bedding, NO odor, Wet (backfill). | | 2 — | ! | ! | Light REddish brown, WELL Softed, loose, for sound NO | | 3 | | | Light Reddish brown, well screed, loose, for sand, No bedding, occ. For staining, occ. dack brown spots, No odor, day, | | | | | | | 9 4 | | 1 | | | 5 4 | | 915 | | | 14 | 2 | 884 | | | 6 4 | | 3 | | | + + | | | | | 7 + + | | | | | | | | Light beaux (buff) well south from the | | + + | |
 | Light brown (buff) well socted, med dense, for sand hoe.
laminated interbedded with light gray silt, solvent odor, moist. | | 9 " " | | <u></u> | odul, moist. | | 10 18 | | 925 | | | 10 0 18 | 8/, | $\tilde{\mathcal{B}}$ | · | | 34 | ' | 5888 | Buff & greenish gray, medium dense-dense, silt interbedded | | 1/ | | | with ut & for said, horizontally laminated, solvent | | /2 - | | | odal, moist. | | | | | | | 13 - | | | | | + + | | | | | 14 = 18 | | _ | | | 78 30 | | 935 | | | 15 1 42 | 26 | 2 | · | | 55 | / | SBSC | | | 18 | | - | End of Boxing 16.0' | | T T | | 1 | LIVE OI DURING TOIL | | | ERM_NORTH | | | | |--|--------------|--------------|---------------|--| | | Project _ | <u>رىپەك</u> | EC | Tixhistories Owner Sunter Industries | | | Location | Ru | ck fi | ord IL w.o.Number 9155 JK | | | Sorenole | Numbe | | 589 Total Depth 16,0' Diameter 51/2' | | | Drilling | Compar | 7y <u>2</u> 2 | Aimoreta Deilling Orilling Method 314" I.D. HS-Augus | | | Sampling | Metho | 2 | Aimords Drilling Method 314" I.D. HS-Auger "x2" Solit Spar Log By D.P. Echanek Date Drilled 7-25-89 | | | | | | | | · | . 1 | i | 1 | | | 1 | , 2 <u>2</u> | | 9 11 | DESCRIPTION/SOIL CLASSIFICATION | | DEP IN | BLOWS | (wddy) | Tour S | Color, Texture, Structures | | ر ا <u>ه</u> | (K) = | 120 | υz | | | | | | | Asphalt | | / | | | | | | · / | | | | DO bedding, NO octor, dry (Aggregate Base). | | 2 — | | | | Deal beauty and | | 2 — | 1 | | | DARK brown, poorly speted, med. cleps, player for-
HED. SAND W/ TR. Fu. & CR. GRAVE, DEGANIC ODOR, FEOX
Staining, oil staining, day (Fill). | | <u> </u> | | | | HEO. SAND W/ TR. FN. & CR. GRAVE, DEGANIC ODOR, FEOX | | 3 | | | | Staining oil staining day (Fill) | | + | | | | | | 4 | 6 | + | 2 | | | | 2 | 1. | 10. | | | 5 | \ | 1,2 | * | Light Reddish brown NELL speted wed the fire to said | | | 3 1/6 | 2 | 33 | the beelding in all a to the | | 6 | 26 | ├ | 3 | Light Reddish brown, NELL sorted, Hedium derse, for SAND, NU bedding, NO odar, occ. FEOX staining, dry, | | + | | | | | | r eq 1 | | | | | | ` | + | | | | | 8- | | | | Light become, well socied, loose, of sand, no bedding, | | 1 | | | | No odol dry | | g _ | | | | · · | | · / <u> </u> ; | 5 | | 50 | I what heaves well control is it is | | | 2/1/ | 0 | 01 | heading do solar de | | 10 | 18 | 0 | 98 | Light home wed have all to | | | 22 | | 58 | with sit had been well souted it said intersected | | 1/ | | | | Light beown, well souted, med dense, for sAND, horizontal bedding, NO odor day. Light brown, Med dense, well souted of sAND interbedded with silt, hor laminated, NO odor, dry sAND moist silt. | | 1 | | | | THE WELL SOPIED HER, CLENSE, YN SAND HOD IN TAIL | | 12 | | | ĺ | bédded, so odae, day. | | + | | | ļ | | | 13+ | | | | Light REddish BROWN, CHENSE, WELL SORTED SITT INTER beddied | | + | + | | | with fur it sand, well souted, horizontally bedded, | | 14 | | | _ | Light Reddish brown dense, well souted silt interbedded with for it of sand, well souted horizontally bedded, occ. FEOX staining, no odur, dry sand, moist silt. | | + | 3 30 | | 001 | J, Jan 19 5110 , 1110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 15+ | 7-12 | 0.0 | | | | + | 5 3 | 0 | 5890 | | | 16 | 30 | ļ | 1 | | | + | - | | | End of Boling 16.0' | | | L | L | | | APPENDIX B , ----- Tel: (312) 289-3100 Fax: (312) 289-4180 # **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82422 Sample Description: B-1-C; B-1 Suntec Date Taken: 05-23-89 1600 Date Received: 05-25-89 1445 Solids, Total 85.92 કૃ Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 # **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 .06-13-89 Sample No.: 82422 Sample Description: B-1-C; B-1 Suntec Date Taken: 05-23-89 1600 Date Received: 05-25-89 1445 #### VOLATILE COMPOUNDS | Acrolein | <10. | u g /g | |---------------------------|-------------|---------------| | Acrylonitrile | <10. | ug/g | | Benzene | <1.0 | ug/g | | Bromodichloromethane | <1.0 | ug/g | | Bromoform | <1.0 | ug/g | | Bromomethane | <10. | ug/g | | Carbon tetrachloride | <1.0 | ug/g | | Chlorobenzene | <1.0 | ug/g | | Chloroethane | <10. | ug/g | | 2-Chloroethylvinyl ether | <1.0 | ug/g | | Chloroform | <1.0 | ug/g | | Chloromethane | <10. | ug/g | | Dibromochloromethane | <1.0 | ug/g | | 1,2-Dichlorobenzene | <1.0 | ug/g | | 1,3-Dichlorobenzene | <1.0 | ug/g | | 1,4-Dichlorobenzene | <1.0 | ug/g | | 1,1-Dichloroethane | <1.0 | ug/g | | 1,2-Dichloroethane | <1.0 | | | 1,1-Dichloroethene | <1.0 | ug/g | | cis-1,2-Dichloroethene | <1.0 | ug/g | | trans-1,2-Dichloroethene | <1.0 | ug/g | | 1,2-Dichloropropane | <1.0 | ug/g | | cis-1,3-Dichloropropene | <1.0 | ug/g | | trans-1,3-Dichloropropene | <1.0 | ug/g | | Ethyl benzene | <1.0 | ug/g | | Ecity 1 Delizerie | \1.0 | ug/g | Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 # **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82422 Sample Description: B-1-C; B-1 Suntec Date Taken: 05-23-89 1600 Date Received: 05-25-89 1445 | Methylene chloride | <5.0 | ug/g | |---------------------------|------|------| | 1,1,2,2-Tetrachloroethane | <1.0 | ug/g | | Tetrachloroethene | <1.0 | ug/g | | Toluene | <1.0 | ug/g | | 1,1,1-Trichloroethane | <1.0 | ug/g | | 1,1,2-Trichloroethane | <1.0 | ug/g | | Trichloroethene | <1.0 | ug/g | | Trichlorofluoromethane | <1.0 | ug/g | | Vinyl chloride | <10. | ug/g | | Xylenes, Total | <1.0 | ug/g | | Isopropanol | <10. | ug/g | Results on a dry weight basis. ITE I WILLWEST, ILL. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103 Tel: (312) 289-3100 Fax: (312) 289-4180 # ANALYTICAL REPORT Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82423 Sample Description: B-2-B; B-2 Suntec Date Taken: 05-23-89 1640 Date Received: 05-25-89 1445 Solids, Total 81.20 ક્ર Results on a dry weight basis. Bartlett Division 850 West Bart Bartlett, IL 60 Tel: (312) 289 Fax: (312) 289 # **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82423 Sample Description: B-2-B; B-2 Suntec 05-23-89 1640 Date Taken: Date Received: 05-2 #### VOLATILE COMPOUNDS |
Acrolein | <10. | ug/g | |---------------------------|------|---------------| | Acrylonitrile | <10. | ug/g | | Benzene | <1.0 | ug/g | | Bromodichloromethane | <1.0 | ug/g | | Bromoform | <1.0 | ug/g | | Bromomethane | <10. | ug/g | | Carbon tetrachloride | <1.0 | ug/g | | Chlorobenzene | <1.0 | u g /g | | Chloroethane | <10. | ug/g | | 2-Chloroethylvinyl ether | <1.0 | ug/g | | Chloroform | <1.0 | ug/g | | Chloromethane | <10. | ug/g | | Dibromochloromethane | <1.0 | ug/g | | 1,2-Dichlorobenzene | <1.0 | ug/g | | 1,3-Dichlorobenzene | <1.0 | ug/g | | 1,4-Dichlorobenzene | <1.0 | ug/g | | 1,1-Dichloroethane | <1.0 | ug/g | | 1,2-Dichloroethane | <1.0 | ug/g | | 1,1-Dichloroethene | <1.0 | ug/g | | cis-1,2-Dichloroethene | <1.0 | ug/g | | trans-1,2-Dichloroethene | <1.0 | ug/g | | 1,2-Dichloropropane | <1.0 | ug/g | | cis-1,3-Dichloropropene | <1.0 | ug/g | | trans-1,3-Dichloropropene | <1.0 | ug/g | | Ethyl benzene | <1.0 | ug/g | | ~ | | - ,, , | Results on a dry weight basis. Bartlett Division 850 West Bartlett, IL 60° Tel: (312) 289-Fax: (312) 289 # **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82423 Sample Description: B-2-B; B-2 Suntec Date Taken: 05-23-89 1640 Date Received: 05-2 | Methylene chloride | <5.0 | ug/g | |---------------------------|------|------| | 1,1,2,2-Tetrachloroethane | <1.0 | ug/g | | Tetrachloroethene | <1.0 | ug/g | | Toluene | <1.0 | ug/g | | 1,1,1-Trichloroethane | <1.0 | ug/g | | 1,1,2-Trichloroethane | <1.0 | ug/g | | Trichloroethene | <1.0 | ug/g | | Trichlorofluoromethane | <1.0 | ug/g | | Vinyl chloride | <10. | ug/g | | Xylenes, Total | <1.0 | ug/g | | Isopropanol | <10. | ug/g | Results on a dry weight basis. NET MIGWEST. **Bartlett Division** 850 West Bart: Bartlett, IL 60 Tel: (312) 289 Fax: (312) 289 ## **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82424 Sample Description: B-3-D; B-3 Suntec Date Taken: 05-24-89 1150 Date Received: 05-2 Solids, Total 87.54 જ્ Results on a dry weight basis. **Bartlett Divisi** 850 West Barn Bartlett, IL 60 Tel: (312) 289 Fax: (312) 289 05-2 # **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82424 Sample Description: B-3-D; B-3 Suntec Date Taken: 05-24-89 1150 Date Received: #### VOLATILE COMPOUNDS | lemelein | ~10 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |---------------------------|-------------|---| | Acrolein | <10. | ug/g | | Acrylonitrile | <10. | ug/ g | | Benzene | <1.0 | ug/g | | Bromodichloromethane | <1.0 | ug/g | | Bromoform | <1.0 | u g /g | | Bromomethane | <10. | ug /g | | Carbon tetrachloride | <1.0 | ug /g | | Chlorobenzene | <1.0 | u g /g | | Chloroethane | <10. | ug/g | | 2-Chloroethylvinyl ether | <1.0 | u g /g | | Chloroform | <1.0 | ug /g | | Chloromethane | <10. | ug/g | | Dibromochloromethane | <1.0 | u g /g | | 1,2-Dichlorobenzene | <1.0 | ug/g | | 1,3-Dichlorobenzene | <1.0 | ug /g | | 1,4-Dichlorobenzene | <1.0 | ug /g | | 1,1-Dichloroethane | <1.0 | ug /g | | 1,2-Dichloroethane | <1.0 | ug/g | | 1,1-Dichloroethene | <1.0 | ug /g | | cis-1,2-Dichloroethene | <1.0 | ug /g | | trans-1,2-Dichloroethene | <1.0 | ug /g | | 1,2-Dichloropropane | <1.0 | u g /g | | cis-1,3-Dichloropropene | <1.0 | ug /g | | trans-1,3-Dichloropropene | <1.0 | ug /g | | Ethyl benzene | <1.0 | | | Ediyi benzene | \1.0 | ug /g | Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 ## **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82425 Sample Description: B-4-E; B-4 Suntec Date Taken: 05-24-89 1615 Date Received: 05-25-89 1445 Solids, Total 79.23 કૃ Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 # **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82425 Sample Description: B-4-E; B-4 Suntec Date Taken: 05-24-89 1615 Date Received: 05-25-89 1445 #### VOLATILE COMPOUNDS | Acrolein | <10. | ug/g | |---------------------------|------|------| | Acrylonitrile | <10. | ug/g | | Benzene | <1.0 | ug/g | | Bromodichloromethane | <1.0 | ug/g | | Bromoform | <1.0 | ug/g | | Bromomethane | <10. | ug/g | | Carbon tetrachloride | <1.0 | ug/g | | Chlorobenzene | <1.0 | ug/g | | Chloroethane | <10. | ug/g | | 2-Chloroethylvinyl ether | <1.0 | ug/g | | Chloroform | <1.0 | ug/g | | Chloromethane | <10. | ug/g | | Dibromochloromethane | <1.0 | ug/g | | 1,2-Dichlorobenzene | <1.0 | ug/g | | 1,3-Dichlorobenzene | <1.0 | ug/g | | 1,4-Dichlorobenzene | <1.0 | ug/g | | 1,1-Dichloroethane | <1.0 | ug/g | | 1,2-Dichloroethane | <1.0 | ug/g | | 1,1-Dichloroethene | <1.0 | ug/g | | cis-1,2-Dichloroethene | <1.0 | ug/g | | trans-1,2-Dichloroethene | <1.0 | ug/g | | 1,2-Dichloropropane | <1.0 | ug/g | | cis-1,3-Dichloropropene | <1.0 | ug/g | | trans-1,3-Dichloropropene | <1.0 | ug/g | | Ethyl benzene | <1.0 | ug/g | | | | 2, 3 | Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 ## ANALYTICAL REPORT Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82425 Sample Description: B-4-E; B-4 Suntec Date Taken: 05-24-89 1615 Date Received: 05-25-89 1445 | Methylene chloride | <5.0 | ug/g | |---------------------------|------|---------------| | 1,1,2,2-Tetrachloroethane | <1.0 | ug/g | | Tetrachloroethene | <1.0 | ug/g | | Toluene | <1.0 | ug/g | | 1,1,1-Trichloroethane | <1.0 | ug/g | | 1,1,2-Trichloroethane | <1.0 | ug/g | | Trichloroethene | <1.0 | ug/g | | Trichlorofluoromethane | <1.0 | ug/g | | Vinyl chloride | <10. | ug/g | | Xylenes, Total | <1.0 | ug/g | | Isopropanol | <10. | u g /g | Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 ## **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82426 Sample Description: B-2-E; B-2 Suntec Date Taken: 05-25-89 0840 Date Received: 05-25-89 1445 Solids, Total 89.11 ૪ Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 # **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82426 Sample Description: B-2-E; B-2 Suntec Date Taken: 05-25-89 0840 Date Received: 05-25-89 1445 | Methylene chloride | <5.0 | ug/g | |---------------------------|------|------| | 1,1,2,2-Tetrachloroethane | <1.0 | ug/g | | Tetrachloroethene | <1.0 | ug/g | | Toluene | <1.0 | ug/g | | 1,1,1-Trichloroethane | <1.0 | ug/g | | 1,1,2-Trichloroethane | <1.0 | ug/g | | Trichloroethene | <1.0 | ug/g | | Trichlorofluoromethane | <1.0 | ug/g | | Vinyl chloride | <10. | ug/g | | Xylenes, Total | <1.0 | ug/g | | Isopropanol | <10. | ug/g | Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 # **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 06-13-89 Sample No.: 82426 Deerfield IL 60015 Sample Description: B-2-E; B-2 Suntec Date Taken: 05-25-89 0840 Date Received: 05-25-89 1445 #### VOLATILE COMPOUNDS | Acrolein | <10. | ug/g | |---------------------------|------|---------------| | Acrylonitrile | <10. | ug/g | | Benzene | <1.0 | ug/g | | Bromodichloromethane | <1.0 | ug/g | | Bromoform | <1.0 | ug/g | | Bromomethane | <10. | ug/g | | Carbon tetrachloride | <1.0 | ug/g | | Chlorobenzene | <1.0 | ug/g | | Chloroethane | <10. | ug/g | | 2-Chloroethylvinyl ether | <1.0 | ug/g | | Chloroform | <1.0 | ug/g | | Chloromethane | <10. | ug/g | | Dibromochloromethane | <1.0 | ug/g | | 1,2-Dichlorobenzene | <1.0 | ug/g | | 1,3-Dichlorobenzene | <1.0 | ug/g | | 1,4-Dichlorobenzene | <1.0 | ug/g | | 1,1-Dichloroethane | <1.0 | u g /g | | 1,2-Dichloroethane | <1.0 | ug/g | | 1,1-Dichloroethene | <1.0 | ug/g | | cis-1,2-Dichloroethene | <1.0 | ug/g | | trans-1,2-Dichloroethene | <1.0 | ug/g | | 1,2-Dichloropropane | <1.0 | ug/g | | cis-1,3-Dichloropropene | <1.0 | ug/g | | trans-1,3-Dichloropropene | <1.0 | ug/g | | Ethyl benzene | <1.0 | ug/g | Results on a dry weight basis. # SOIL GAS SURVEY OF UNDERGROUND STORAGE TANKS AT SUNTEC INDUSTRIES MAY 1, 1989 ## PREPARED BY: ENVIRONMENTAL RESOURCES MANAGEMENT-NORTH CENTRAL, INC. 102 WILMOT ROAD, SUITE 300 DEERFIELD, ILLINOIS 60015 TROJECT WO.: 9059 ## TABLE OF CONTENTS | SECTION NO. | TITLE | PAGE NO | |--------------------------|--|------------------| | | | | | 1.0 | INTRODUCTION | 1 | | 2.0 | SURVEY METHODOLOGY | 2 | | 3.0 | SURVEY RESULTS | 2 | | 4.0 | SURVEY CONCLUSIONS AND RECOMMENDATIONS | 4 | | 5.0 | PHASE II INVESTIGATION WORK PLAN | 5 | | 5.1
5.2
5.3
5.4 | Vertical Extent of Contamination
Soil Gas Survey
Tank No. 4 Closure
In-Place Closure Activities | 5
6
7
8 | | 6.0 | DUASE IT INVESTIGATION SCUEDULE | 0 | # SOIL GAS SURVEY OF UNDERGROUND STORAGE TANKS AT SUNTEC INDUSTRIES #### 1.0 INTRODUCTION The Suntec Industries, Inc. (Suntec) facility located at 2210 Harrison Avenue, Rockford, Illinois utilized twelve underground storage tanks and two (2) in-ground, vaulted storage tanks for storage of raw materials used in the manufacturing process, waste materials and motor fuels. This facility also utilizes two (2) underground tanks (Tanks Nos. 5 and 6) for storage of fuel oil used for building spaceheating. These tanks were not included in the program activities described in this The locations of all storage tanks are shown in Figure All tanks were emptied and cleaned in preparation for closure. Sampling and analysis of soils in the immediate vicinity of
these tanks revealed the presence of components (Tank No. 4) and oils and solvents (Tank Nos. 7, 8, Based on this analytical data, a notification of and 9). potential release from these underground tanks was made to the Illinois Environmental Protection Agency (IEPA) by Suntec on February 9, 1989. A work plan for an initial investigation of the degree and extent of contamination resulting from the reported releases was prepared and submitted on March 17, 1989 in response to an IEPA request dated February 17, 1989. This initial investigation, performed by Environmental Resources Management-North Central, Inc. (ERM), consisted of a soil gas survey of the western portion of the facility property containing the underground storage tanks. The following sections of this report describe the survey methodology, presents all survey data, conclusions and recommendations, and proposes additional investigative steps based on survey results. #### 2.0 SURVEY METHODOLOGY The objective of this survey was to determine the lateral extent of any near-surface soil contamination through the collection and screening of soil gas for volatile organics. A 25 foot by 25 foot grid network tied to the western property line was used to locate the gas sampling points. The soil gas procedure requires driving a perforated stainless steel probe into the soil and pulling a known quantity of soil vapor through a Teflon tube sampling train. An HNu photoionization detector is used to obtain field measurement of volatile organic concentrations in the soil gas. Activated carbon sampling tubes are utilized to absorb and collect the soil gas components, primarily volatile Subsequent carbon tube desorbtion organic compounds. laboratory analysis is used to qualitatively identify the gas components. #### 3.0 SURVEY RESULTS HNu meter readings were recorded for all gas sampling points. Gas samples were collected on activated carbon tubes from selected sampling nodes where field HNu readings exceeded 5 Vppm. A total of 64 gas sampling points were tested in the survey. Carbon tube samples were obtained at ten (10) locations, and were analyzed for specific volatile organics. Appendix A presents all HNu meter readings recorded during the survey. A representation of the areal extent of measured elevated levels of volatile organics, based on survey data, is shown in Figure 2. These areas have been subdivided to indicate the location and size of areas where HNu meter readings exceeded 5 Vppm. Areas where HNu readings exceeded 10 Vppm are shown as cross-hatched areas in Figure 2. The cross-hatched area immediately west of the Oil Room contained the highest survey meter reading, 95 Vppm. Meter readings in the area located west of the Tank Nos. 12 and 13 ranged from 4 to 20 Vppm. Meter readings in this area generally decreased with distance from the underground tanks. The cross-hatched area adjacent to the Flammable Liquid Storage Building contained volatile organic vapor levels ranging from 10 to 35 Vppm. Survey data indicates that the area of soil contamination extends to the western property boundary at Gas Sampling Points 37 and 39. The soil gas survey indicated that no significant soil contamination exists at a depth of approximately 4 feet in the southern portion of the underground tank area. Specifically, the survey data indicates that any spillage or leakage of gasoline that may have occurred in the area of Tank No. 4 has not resulted in wide-spread contamination of near-surface soils. Activated carbon collection tubes were used to identify the soil gas components in the those areas where HNu readings exceeded 10 Vppm. Analysis by the Milwaukee, Wisconsin laboratory of Radian Corporation determined the major gas components to be chlorinated solvents such as trichloroethene, trichloroethane, dichloroethene, and dichloroethane. All laboratory data is presented in Appendix B. #### 4.0 SURVEY CONCLUSIONS AND RECOMMENDATIONS The soil gas survey determined that no significant near-surface soil contamination exists in the southern portion of the underground tank area. The data indicated that any spillage or leakage of gasoline that may have occurred in the area of Tank No. 4 has not resulted in wide-spread contamination of near-surface soils. ERM recommends that Suntec proceed with all steps necessary for closure in-place of the underground tanks in the southern portion, except Tank No. 4. We recommend that Tank No. 4 be excavated and soil samples be taken to confirm the presence or absence of significant soil contamination. The soil gas survey identified three distinct areas of near-surface soil contamination in the northern portion of the underground tank area. The survey data indicated that the identified areas of soil contamination extends to Suntec's western property boundary. ERM recommends that additional testing be performed to determine the vertical extent of contamination in the areas identified by the soil gas survey. Further, we recommend that soil gas testing be used to screen the off-site area and the portion of the facility property to the north that the original survey indicated was potentially contaminated. #### 5.0 PHASE II INVESTIGATION WORK PLAN The Investigation Work Plan presented in this section incorporates the recommended actions resulting from the soil gas survey. #### 5.1 Vertical Extent of Contamination The vertical extent of contamination in the three (3) areas of near-surface contamination will be determined using a series of five (5) soil borings. The proposed locations for these borings are shown in Figure 3. Actual boring locations will be selected by an ERM geologist based on field conditions. Soil samples will be composited vertically over 2-foot intervals and screened for organics using an HNu photoionization detector. Samples will be obtained from ground surface to a depth where: - Metering screening indicates the lack of measurable volatile organics, or - 2. The saturated zone is encountered. If the HNu screening indicates that soil contamination ends above the ground water table, a soil sample will be submitted for confirmatory laboratory analysis of volatile organics (VOCs) and isopropyl alcohol. These analytical parameters were chosen because Tank Nos 11, 12 and 13, which contained fresh solvent, waste solvent and isopropyl alcohol respectively, are potential sources of contamination. If the HNu screening indicates that soil contamination extends to the ground water interface, 1) a soil sample, taken at the interface, will be submitted for laboratory analysis of VOCs and isopropyl alcohol, 2) based on site conditions, one of the borings will be converted to a monitoring well, and 3) following well development, a sample of ground water will be taken. If necessary, ground water samples will also be taken from the facility's eastern boundary to represent upgradient ground water characteristics. The number of ground water samples submitted for laboratory analysis of VOCs and isopropyl alcohol will be determined based on the number and location of monitoring wells installed in order to provide the best characterization of site ground water quality. ### 5.2 Soil Gas Survey The initial soil gas survey indicated that there are areas of potentially significant near-surface soil contamination beyond the area investigated. The Phase II Work Plan includes performing soil gas surveys in these suspect areas. the areas to be included in these presents follow-up investigations. The area beyond the facility's western boundary to be investigated is approximately 150 feet by 75 feet. The facility property to the north of the original survey grid to be investigated is approximately 75 feet by 75 feet. Two lines of sampling points paralleling the concrete drainage ditch will be used in the vacant land beyond the facility's western boundary. A sampling network, based on a 25-foot by 25-foot grid, will be used in the facility area. The objective of these investigations is to further define the lateral extent of near-surface soil contamination. Therefore, no collection or analysis of gas samples beyond HNu meter screening will be performed. The survey data will be used to determine if characterization of subsurface conditions is necessary. Any additional investigation can be incorporated into an expanded version of the activities presented in Section 5.1. #### 5.3 Tank No. 4 Closure The soil gas survey determined that no significant near-surface soil contamination exists in the southern potion underground tank area. The closure of Tank No. 4 will follow the procedures presented in Federal regulations governing underground storage tanks. Notification of the intent to close will be made to the Illinois State Fire Marshal's Office thirty (30) days prior to excavation and removal. Overburden soil and backfill material will be screened for the presence of contamination during excavation using an HNu photoionization meter. material producing a meter reading in excess of 10 Vppm will be segregated as contaminated soil for subsequent handling disposal. Clean overburden and backfill will be set aside for use as excavation backfill. The steel tank will be removed, cut up and disposed of as scrap metal. Following tank removal, the excavation side walls and bottom will be screened contamination using an HNu meter. Soil excavation will continue until field screening indicates that all measurable contamination has been removed. A composite soil sample will be prepared using a minimum of five (5) sampling points located in the excavation bottom and sidewalls. This composite sample will be submitted for laboratory analysis of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and EP Toxicity lead. IEPA Target Cleanup Objectives for Soil will be compared to the sampled analytical data to confirm that no significant soil contamination is present. If laboratory analysis indicates that no significant contamination exists, the excavation will be backfilled
to grade with clean soil and bank run gravel. A report documenting all closure activities will be submitted to the IEPA and the State Fire Marshal's Office. #### 5.4 In-Place Closure Activities The soil gas survey determined that no significant near-surface soil contamination exists in the southern portion of the underground tank area. Therefore, application will be made to the State Fire Marshall's Office for closure in-place of Tank Nos. 1 and 15. This application will include an engineer's opinion that excavation of the volume of material necessary to expose and remove these tanks would structurally endanger nearby facility buildings. Following approval of the in-place closure application, both tanks will be filled with an inert solid and the excavations backfilled to grade. A report documenting all in-place closure activities will be prepared and submitted to the IEPA and the State Fire Marshall's Office. #### 6.0 PHASE II INVESTIGATION SCHEDULE The propose schedule for Phase II activities is presented in Table 1. Actual scheduling is dependant upon the availability of subcontractors and unforeseen delays due to weather or site conditions. As of this time, access authorization to the property to the west of the plant has not been obtained; if authorization is not received within a reasonable time, the schedule may be extended. TABLE 1 PHASE II INVESTIGATION SCHEDULE | ACTIVITY | ESTIMATED
DURATION | PROPOSED COMPLETION DATE | | | |--|----------------------------|--|--|--| | | 0. 3 | | | | | Soil Gas Surveys | 2 days | May 24, 1989 | | | | Soil Borings
Monitor Well Installation(s) | 1 week
2 days | May 26, 1989
May 31, 1989 | | | | Subsurface Investigation Report | | June 30, 1989 | | | | Tank No. 4 Closure | | | | | | Field Work
Closure Report | 1 week
4 weeks | May 26, 1989
June 30, 1989 | | | | In-Place Closure | | | | | | Application
Field Work
Closure Report | 1 week
1 week
1 week | May 12, 1989
May 19, 1989
May 26, 1989 | | | 4 APPENDIX A # APPENDIX A # SOIL GAS SURVEY DATA | Sampling Point | Depth, Feet | HNu Meter Reading, Vppm | |----------------|-------------|-------------------------| | 1 | 2.0 | 0.0 | | 2 | 3.5 | 35.0 | | 3 | 3.5 | 10.6 | | 4 | 3.5 | 0.0 | | 5 | 3.5 | 0.5 | | 6 | 3.5 | 3.0 | | 7 | 3.5 | 4.8 | | 8 | 3.5 | 5.0 | | 9 | 3.5 | 2.0 | | 10 | 3.5 | 2.5 | | 11 | 3.5 | 4.6 | | 12 | 3.5 | 0.8 | | 13 | 3.5 | 0.0 | | 14 | 3.5 | 0.0 | | 15 | 3.5 | 0.3 | | 16 | 3.5 | 1.0 | | 17 | 3.5 | 1.0 | | 18 | 3.5 | 1.0 | | 19 | 3.5 | 0.0 | | 20 | 3.5 | 0.6 | | 21 | 3.5 | 1.1 | | 22 | 3.5 | 1.0 | | 23 | 3.5 | 4.9 | | 24 | 3.5 | 11.2 | | 25 | 3.5 | 15.0 | | 26 | 3.5 | 95.0 | | 27 | 3.5 | 1.3 | | 28 | 3.5 | 0.4 | | 29 | 4.0 | 6.2 | | 30 | 3.5 | 8.5 | | 31 | 3.5 | 20.0 | | 32 | 3.5 | 0.0 | | 33 | 3.5 | 0.0 | | 34 | 3.5 | 0.0 | | 35 | 3.5 | 0.0 | | 36 | 3.5 | 0.0 | | 37 | 3.5 | 4.0 | | 38 | 3.5 | 0.0 | | 39 | 3.5 | 3.8 | | 40 | 3.5 | 0.0 | | 41 | 3.5 | 0.0 | | 42 | 3.5 | 0.1 | | 43 | 3.5 | 0.0 | | 44 | 3.5 | 1.4 | | 45 | 3.5 | 0.2 | | 46 | 3.5 | 0.0 | | | | | # APPENDIX A (continued) # SOIL GAS SURVEY DATA | Sampling Point | Depth, Feet | HNu Meter Reading, Vppm | |----------------|-------------|-------------------------| | | | | | 47 | 3.5 | 0.0 | | 48 | 3.5 | 1.4 | | 49 | 3.5 | 0.1 | | 50 | 3.5 | 0.0 | | 51 | 3.5 | 0.0 | | 5 2 | 3.5 | 0.1 | | 53 | 3.5 | 0.0 | | 54 | 3.5 | 0.8 | | 5 5 | 3.5 | 0.0 | | 5 6 | 3.5 | 0.4 | | 57 | 3.5 | 0.4 | | 5 8 | 3.5 | 0.0 | | 59 | 3.5 | 0.0 | | 60 | 3.5 | 0.0 | | 61 | 3.5 | 0.0 | | 62 | 3.5 | 0.0 | | 63 | 3.5 | 0.0 | | 64 | 3.5 | 0.0 | APPENDIX B 3Page 1 RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 04/06/89 04:00:18 REPORT ERM North Central PREPARED Radian Corporation TO 102 Wilmont Road BY Milwaukee Office Deerfield, Illinois 60018 5103 West Beloit Road Milwaukee, WI 53214 ATTEN Mr. James Kane ATTEN Charles S. Applepate PHONE (414)643-2768 CLIENT ERM SAMPLES 10 COMPANY ERM North Central FACILITY 102 Wilmont Road State of Wisconsin - Certified Laboratory Deerfield, Illinois 60018 No. 241293910 WORK ID ERM JOB # 9059 RADIAN PROJECT NUMBER 207-027-23-01 TAKEN 03/29/89 BY MER, CJB, MLB TRANS FEX EX AIRBILL # 2014690403 TYPE CARBON TUBES P.O. # INVOICE under separate cover SAMPLE IDENTIFICATION TEST CODES and NAMES used on this report 01 CARBON TUBE SG-2 LOC. 2 8010 HALOGENATED VOLITILE ORGN. BOROB AROMATIC VOLITILE ORGANICS 02 CARBON TUBE SG-23 03 CARBON TUBE SG-24 04 CARBON TUBE SG-25 05 CARBON TUBE SG-26 06 CARBON TUBE SG-31 07 CARBON TUBE SG-30 08 CARBON TUBE SG-3 09 CARBON TUBE SG-8 10 CARBON TUBE SG-37 RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 Page 2 Results by Sample SAMPLE ID CARBON TUBE SG-2 LOC. 2 74-97-5 Mixture FRACTION 01A TEST CODE 8010 Date & Time Collected 03/29/89 NA % Recovery NA % Recovery NAME HALOGENATED VOLITILE ORGN. Category #### ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS | STRMT TRACOR | TALTER TO 0.1 (0.50 / 0.50 | | | | | |--------------|----------------------------|--------|-----------|--------|--------| | | INJECTD 04/05/89 | FACTOR | 500.00 | UNITS | ng/tub | | CAS# | СОМРОИИР | RESULT | DET LIMIT | FACTOR | | | 74-87-3 | Chloromethane | ND | 3300 | 500.00 | | | 74-83-9 | Bromomethane | ND | 7500 | 500.00 | | | 75718 | Dichlorodifluoromethane | ND | 50000 | 500.00 | | | 75-01-4 | Vinyl Chloride | 10000 | 1600 | 500.00 | | | 75-00-3 | Chloroethane | ND | 1100 | 500.00 | | | 75-09-2 | Methylene Chloride | ND | 320 | 500.00 | | | 75-69-4 | Trichlorofluoromethane | ND | 550 | 500.00 | | | 75-35-4 | 1,1-Dichloroethene | ND | 20 | 500.00 | | | 75343 | 1,1-Dichloroethane | 6800 | 390 | 500.00 | | | 156-60-5 | trans-1,2-Dichloroethene | 10500 | 25 | 500.00 | | | 67-66-3 | Chloroform | ND | 120 | 500.00 | | | 107-06-2 | 1,2-Dichloroethane | ND | 170 | 500.00 | | | 71-55-6 | 1,1,1-Trichloroethane | 1760 | 75 | 500.00 | | | 56-23-5 | Carbon Tetrachloride | ND | 110 | 500.00 | | | 75-27-4 | Bromodichloromethane | ND | 250 | 500.00 | | | 78-87-5 | 1,2-Dichloropropane | ND | 150 | 500.00 | | | 10061-02-6 | trans-1,3-Dichloropropene | ИD | 600 | 500.00 | | | 79-01-6 | Trichloroethene | ND | 25 | 500.00 | | | 124-48-1 | Dibromochloromethane | ND | 1400 | 500.00 | | | 7900-5 | 1,1,2-Trichloroethane | ND | 500 | 500.00 | | | 10061-01-5 | cis-1,3-Dichloropropene | ND | 800 | 500.00 | | | 100-75-8 | 2-Chloroethylvinyl Ether | ND | 1400 | 500.00 | | | 75-25-2 | Bromoform | ND | 23000 | 500.00 | | | 79345 | 1,1,2,2-Tetrachloroethane | ND | 500 | 500.00 | | | 127-18-4 | Tetrachloroethene | ND | 250 | 500.00 | | | | | | | | | Bromochloromethane 2-Bromo-1-chloropropane Page 3 RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 Results by Sample SAMPLE ID CARBON TUBE SG-2 LOC. 2 FRACTION 01A TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS Date & Time Collected 03/29/89 Category ## ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS | 0101107 | haha | | | | | 1 | VERIFIED | MM | |--------------------------|-----------|--------|------------|------------------|--------|-------|----------|--------| | ANALYST
INSTRMT TRACO | MM
R I | NJECTD | 04/05/89 | FILE #
FACTOR | 500.00 | UNITS | ng/tube | | | | CAS# | : | | COMPOUND | RESULT | DE. | T LIMIT | FACTOR | | | 71-43-2 | | | Benzene | 300 | | 15 | 500.00 | | | 108-88-3 | ; | | Toluene | ND | | 190 | 500.00 | | | 100-41-4 | | Eth | ylbenzene | ND | | 260 | 500.00 | | | 108-90-7 | • | Chlo | robenzene | ND | | 330 | 500.00 | | | 106-46-7 | | 1,4-Dichlo | nobenzene | ND | : | 1300 | 500.00 | | | 541-73-1 | | 1,3-Dichlo | robenzene | ND | | 500 | 500.00 | | | 95-50-1 | | 1,2-Dichlo | robenzene | ND | | 800 | 500.00 | | | 108-38-3 | | | m-Xylene | 7700 | | 650 | 500.00 | | | Mixture | | 0 | ,p-Xylene | ND | | 550 | 500.00 | SURROGATE Page 4 RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 Results by Sample SAMPLE ID CARBON TUBE SG-23 FRACTION 02A TEST CODE 8010 NAME HALOGENATED VOLITILE ORGN. Date & Time Collected 03/29/89 Category ## ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS | ANALYST MM | | FILE # | | VERIFIED MM | |----------------|---|-----------|---|---------------| | INSTRMT TRACOR | INJECTD 04/04/89 | FACTOR | 100.00 | UNITS ng/tube | | | COMPOUND | DEC. 11 T | gray production of the foldings and makes | FOOTOR | | CAS#_ | СОМРОИИО | RESULT | DET LIMIT | FACTOR | | 74-87-3 | Chloromethane | ND | 660 | 100.00 | | 74-83-9 | Bromomethane | ND | 1500 | 100.00 | | 75-71-8 | Dichlorodifluoromethane | ИD | 10000 | 100.00 | | 75-01-4 | Vinyl Chloride | ND | 320 | 100.00 | | 75-00-3 | Chloroethane | ND | 220 | 100.00 | | 75-09-2 | Methylene Chloride | ND | 63 | 100.00 | | 75-69-4 | Trichlorofluoromethane | 1800 | 110 | 100.00 | | 75-35-4 | 1,1-Dichloroethene | 3900 | 4.0 | 100.00 | | 75-34-3 | 1,1-Dichloroethane | 40300 | 77 | 100.00 | | 156-60-5 | trans-1,2-Dichloroethene | 41300 | 5.0 | 100.00 | | 67-66-3 | Chloroform | 3440 | 23 | 100.00 | | 107-06-2 | 1,2-Dichloroethane | ND | 34 | 100.00 | | 71-55-6 | 1,1,1-Trichloroethane | 124300 | 15 | 100,00 | | 56-23-5 | Carbon Tetrachloride | ND | 21 | 100.00 | | 75-27-4 | Bromodichloromethane | ND | 49 | 100.00 | | 78-87-5 | 1,2-Dichloropropane | ND | 29 | 100.00 | | 10061-02-6 | trans-1,3-Dichloropropene | ND | 120 | 100.00 | | 79-01-6 | Trichloroethene | 23500 | 5.0 | 100.00 | | 124-48-1 | Dibromochloromethane | ND | 280 | 100.00 | | 79-00-5 | 1,1,2-Trichloroethame | ND | 100 | 100.00 | | 10061-01-5 | cis-1,3-Dichloropropene | ND | 160 | 100.00 | | 100-75-8 | 2-Chloroethylvinyl Ether | ND | 280 | 100.00 | | 75-25-2 | Bromoform | ND | 4600 | 100.00 | | 79-34-5 | 1,1,2,2-Tetrachloroethane | ND | 100 | 100.00 | | 127-18-4 | Tetrachloroethene | 7500 | 49 | 100.00 | | | , | | | | | | | | |
 | | | | | | SURROGATES 74-97-5 Bromochloromethane NA % Recovery Mixture 2-Bromo-1-chloropropane NA % Recovery Page 5 RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 Results by Sample SAMPLE ID CARBON TUBE SG-23 FRACTION 02A TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS Date & Time Collected 03/29/89 Category #### ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS | ANAL VET | мм | | FILE # | | VERIFIED | MM | |--------------------------|----------|-----------------|------------|--------|---------------|--------| | ANALYST
INSTRMT TRACO | MM I | NJECTD 04/04/89 | FACTOR | 100.00 | UNITS ng/tube | | | | CAS# | | COMPOUND | RESULT | DET LIMIT | FACTOR | | | 71-43-2 | • | Benzene | ND | 20 | 100.00 | | · | 108-88-3 | | Toluene | 46 | 37 | 100.00 | | | 100-41-4 | Eth | nylbenzene | 64 | 52 | 100.00 | | | 108-90-7 | Ch1c | orobenzene | - ND | 65 | 100.00 | | | 106-46-7 | 1,4-Dichlo | mobenzene | ND | 250 | 100.00 | | | 541-73-1 | 1,3-Dichlo | robenzene | 210 | 100 | 100.00 | | | 95501 | 1,2-Dichlo | mobenzene | ND | 160 | 100.00 | | | 108-38-3 | | m−Xylene | ND | 130 | 100.00 | | | Mixture | a | ,p-Xylene | 110 | 110 | 100.00 | SURROGATE Page 6 RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 Results by Sample SAMPLE ID CARBON TUBE SG-24 FRACTION 03A TEST CODE 8010 NAME HALOGENATED VOLITILE ORGN. Date & Time Collected 03/29/89 Category #### ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS | NALYST MM | | FILE # | | VERIFIED | |-------------------|---------------------------|--------|-----------|-------------| | NSTRMT TRACOR | INJECTD 04/05/89 | FACTOR | 500.00 | UNITS ng/tu | | CAS# | СОМРОИИД | RESULT | DET LIMIT | FACTOR | | 74-87-3 | Chloromethane | ND | 3300 | 500.00 | | 74-83-9 | Bromomethane | ND | 7500 | 500.00 | | 75-71-8 | Dichlorodifluoromethane | ND | 50000 | 500.00 | | 75-01-4 | Vinyl Chloride | ND | 1600 | 500.00 | | 7500-3 | Chloroethane | ND | 1100 | 500.00 | | 7509-2 | Methylene Chloride | ND | 320 | 500.00 | | 7569-4 | Trichlorofluoromethane | 2200 | 550 | 500.00 | | 75-35-4 | 1,1-Dichloroethene | 6980 | 20 | 500.00 | | 75-34-3 | 1,1-Dichloroethane | 153000 | 390 | 500.00 | | 156- 6 0-5 | trans-1,2-Dichloroethene | 210000 | 25 | 500.00 | | 67-66-3 | Chloroform | ND | 120 | 500.00 | | 107-06-2 | 1,2-Dichloroethane | ND | 170 | 500.00 | | 71-55-6 | 1,1,1-Trichloroethane | 430000 | 75 | 500.00 | | 56-23-5 | Carbon Tetrachloride | ND | 110 | 500.00 | | 75-27-4 | Bromodichloromethane | ND | 250 | 500.00 | | 78-87-5 | 1,2-Dichloropropane | ND | 150 | 500.00 | | 10061-02-6 | trans-1,3-Dichloropropene | ИD | 600 | 500.00 | | 79-01-6 | Trichloroethene | 74600 | 25 | 500,00 | | 124-48-1 | Dibromochloromethane | ND | 1400 | 500.00 | | 79-00-5 | 1,1,2-Trichloroethane | ND | 500 | 500.00 | | 10061-01-5 | cis-1,3-Dichloropropene | ND | 800 | 500.00 | | 100-75-8 | 2-Chloroethylvinyl Ether | ND | 1400 | 500.00 | | 75-25-2 | Bromoform | ND | 23000 | 500.00 | | 79-34-5 | 1,1,2,2-Tetrachloroethane | ND | 500 | 500.00 | | 127-18-4 | Tetrachloroethene | 18800 | 250 | 500.00 | SURROGATES 74-97-5 Bromochloromethane NA % Recovery Mixture 2-Bromo-1-chloropropane NA % Recovery RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 Results by Sample Page 7 SAMPLE ID CARBON TUBE SG-24 FRACTION 03A TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS Date & Time Collected 03/29/89 Category ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS | ANALYST MM | | | FILE # | | VERIF | IED MM | |----------------|----------|----------------|-----------|--------|------------|----------------| | INSTRMT TRACOR | | JECTD 04/05/89 | FACTOR | 500.00 | UNITS ng/t | ube | | | · CAS# | | СОМРОИИР | RESULT | DET LIM | IIT FACTOR | | | 71-43-2 | | Benzene | ND | 100 | 5 00.00 | | | 108-88-3 | | Toluene | ND | 190 | 500.00 | | | 100-41-4 | Eth | ylbenzene | ND | 260 | 500.00 | | | 108-90-7 | Ch1o | robenzene | ND | 330 | 500.00 | | | 106-46-7 | 1,4-Dichlo | robenzene | ND | 1300 | 500.00 | | | 541-73-1 | 1,3-Dichlo | robenzene | ND | 500 | 500.00 | | | 95-50-1 | 1,2-Dichlo | robenzene | ND | 800 | 500.00 | | | 108-38-3 | | m-Xylene | ND | 650 | 500.00 | | | Mixture | ٥ | ,p-Xylene | ND | 550 | 500.00 | SURROGATE #### RADIAN CORP. REPORT Received: 03/31/89 Page 8 Results by Sample Work Order # M9-03-049 SAMPLE ID CARBON TUBE SG-25 NAME HALOGENATED VOLITILE ORGN. FRACTION 04A TEST CODE 8010 Date & Time Collected 03/29/89 Category #### ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS | ANALYST MM | | FILE # | | VERIFIED MM | |----------------|---------------------------|---------|-----------|---------------| | INSTRMT TRACOR | INJECTD 04/05/89 | FACTOR | 200.00 | UNITS ng/tube | | CAS# | СОМРОИИ | RESULT | DET LIMIT | FACTOR | | 74-87-3 | Chloromethane | ND | 1300 | 200.00 | | 74-83-9 | Bromomethane | ND | 3000 | 200.00 | | 75718 | Dichlorodifluoromethane | ND | 20000 | 200.00 | | 75-01-4 | Vinyl Chloride | ND | 640 | 200.00 | | 75-00-3 | Chloroethane | ND | 440 | 200.00 | | 75-09-2 | Methylene Chloride | ND | 130 | 200.00 | | 75-69-4 | Trichlorofluoromethane | 1780 | 220 | 200.00 | | 75-35-4 | 1,1-Dichloroethene | 2760 | 8.0 | 200.00 | | 75-34-3 | 1,1-Dichloroethane | 118800 | 150 | 200.00 | | 156-60-5 | trans-1,2-Dichloroethene | 146800 | 10 | 200.00 | | 67-66-3 | Chloroform | ND | 46 | 200.00 | | 107-06-2 | 1,2-Dichloroethane | ND | 68 | 200.00 | | 71-55-6 | 1,1,1-Trichlancethane | 280000 | 30 | 200.00 | | 56-23-5 | Carbon Tetrachloride | DOCCO | 42
42 | 200.00 | | 75-27-4 | Bromodichloromethane | ND | 98 | 200.00 | | 78-87-5 | 1,2-Dichloropropane | ND | 58 | 200.00 | | 10061-02-6 | trans-1,3-Dichloropropene | ND | 240 | 200.00 | | 79-01-6 | Trichloroethene | 36500 | 10 | 200.00 | | 124-48-1 | Dibromochloromethane | ND | 560 | 200.00 | | 79-00-5 | 1,1,2-Trichloroethane | ND | 200 | 200.00 | | 10061-01-5 | cis-1,3-Dichloropropene | ND | 320 | 200.00 | | 100-75-8 | 2-Chloroethylvinyl Ether | ND | 560 | 200.00 | | 75-25-2 | Bromoform | ND | 9200 | 200.00 | | 79-34-5 | 1,1,2,2-Tetrachloroethane | ND | 200 | 200.00 | | 127-18-4 | Tetrachloroethene | 3700 | 98 | 200.00 | | · | | · · · · | | | SURROGATES Bromochloromethane NA % Recovery 74-97-5 NA % Recovery Mixture 2-Bromo-1-chloropropane Page 9 RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 Results by Sample SAMPLE ID CARBON TUBE SG-25 FRACTION 04A TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS Date & Time Collected 03/29/89 Category ## ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS | OND VOT | haha | | | | | | VERIFIED | MM | |--------------------------|-----------------|--------|------------|------------------|--------|-------|----------|--------| | ANALYST
INSTRMT TRACO | MM
₹ : | NJECTD | 04/05/89 | FILE #
FACTOR | 200.00 | UNITS | ng/tube | | | | CAS | ŧ | | COMPOUND | RESULT | DE | T LIMIT | FACTOR | | | 71-43-8 | 2 | | Benzene | ND | | 40 | 200.00 | | | 108-88-3 | 3 | | Toluene | ND | | 74 | 200.00 | | | 100-41-4 | + | Eth | y1benzene | ND | | 100 | 200.00 | | | 108-90-7 | | Chlo | robenzene | ND | | 130 | 200.00 | | | 106-46-7 | , | 1,4-Dichlo | robenzene | ND | | 500 | 200.00 | | | 541-73-1 | | 1,3-Dichlo | robenzene | ND | | 200 | 200.00 | | | 9 5-50-1 | | 1,2-Dichlo | robenzene | ND | | 320 | 200.00 | | | 108-38-3 | 5 | | m-Xylene | ND | | 260 | 200.00 | | | Mixture | | o | ,p-Xylene | dИ | | 220 | 200.00 | SURROGATE RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 Results by Sample Page 10 SAMPLE ID CARBON TUBE SG-26 FRACTION 05A TEST CODE 8010 NAME HALOGENATED VOLITILE ORGN. Date & Time Collected 03/29/89 Category #### ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS | M CI | VERIFIE | | FILE # | | NALYST MM | |--------|---------|-----------|--------|---------------------------|---------------| | ng/tub | UNITS | 500.00 | FACTOR | INJECTD 04/05/89 | ISTRMT TRACOR | | | FACTOR | DET LIMIT | RESULT | COMPOUND | CAS# | | | 500.00 | 3300 | ND | Chloromethane | 74-87-3 | | | 500.00 | 7500 | ND | Bromomethane | 74-83-9 | | | 500.00 | 50000 | ND | Dichlorodifluoromethane | 75-71-8 | | | 500.00 | 1600 | ND | Vinyl Chloride | 75-01-4 | | | 500.00 | 1100 | ND | Chloroethane | 75-00-3 | | | 500.00 | 320 | ND | Methylene Chloride | 75-09-2 | | | 500.00 | 550 | ND | Trichlorofluoromethane | 75-69-4 | | | 500.00 | 50 | ND | 1,1-Dichloroethene | 75-35-4 | | | 500.00 | 390 | 39500 | 1,1-Dichloroethane | 75-34-3 | | | 500.00 | 25 | 5100 | trans-1,2-Dichloroethene | 156-60-5 | | | 500.00 | 120 | ND | Chloroform | 67-66-3 | | | 500.00 | 170 | ND | 1,2-Dichloroethane | 107-06-2 | | | 500.00 | 75 | 57400 | 1,1,1-Trichloroethane | 71-55-6 | | | 500.00 | 110 | ND | Carbon Tetrachloride | 56-23-5 | | | 500.00 | 250 | ND | Bromodichloromethane | 75-27-4 | | | 500.00 | 150 | ND | 1,2-Dichloropropane | 78-87-5 | | | 500.00 | 600 | ND | trans-1,3-Dichloropropene | 10061-02-6 | | | 500.00 | 25 | ND | Trichloroethene | 79-01-6 | | | 500.00 | 1400 | ND | Dibromochloromethane | 124-48-1 | | | 500.00 | 500 | ND | 1,1,2-Trichloroethane | 79-00-5 | | | 500.00 | 800 | ND | cis-1,3-Dichloropropene | 10061-01-5 | | | 500.00 | 1400 | ND | 2-Chloroethylvinyl Ether | 100-75-8 | | • | 500.00 | 23000 | ND | Bromoform | 75-25-2 | | | 500.00 | 500 | ПИ | 1,1,2,2-Tetrachloroethane | 79-34-5 | | | 500.00 | 250 | ND | Tetrachloroethene | 127-18-4 | SURROGATES 74-97-5 Bromochloromethane NA % Recovery Mixture 2-Bromo-1-chloropropane NA % Recovery RADIAN CORP. REPORT Work Order # M9-03-049 HEDICIEN Received: 03/31/89 Results by Sample Page 11 SAMPLE ID CARBON TUBE SG-26 FRACTION 05A TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS Date & Time Collected 03/29/89 Category ## ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS | ANALYST | MM | | | FILE # | | | VERIFIED | MM | |---------------|----------|------------|------------|-----------|--------|-------|----------|--------| | INSTRMT TRACO | | NJECTO | 04/05/89 | FACTOR | 500.00 | UNITS | ng/tube | | | | CAS | . . | | COMPOUND | RESULT | DE | T LIMIT | FACTOR | | | 71-43-6
 2 | | Benzene | ПN | | 100 | 500.00 | | | 108-88- | 3 | | Toluene | 11600 | | 190 | 500.00 | | | 100-41-4 | • | Eth | ylbenzene | ND | | 260 | 500.00 | | | 108-90- | <i>r</i> | Chlo | robenzene | ND | | 330 | 500.00 | | | 106-46-7 | • | 1,4-Dichlo | robenzene | ND | | 1300 | 500.00 | | | 541-73- | | 1,3-Dichlo | robenzene | ПИ | | 500 | 500.00 | | · | 95-50-1 | | 1,2-Dichlo | robenzene | ND | | 800 | 500.00 | | | 108-38-3 | 3 | | m-Xylene | ND | | 650 | 500.00 | | | Mixture |) | 0 | ,p-Xylene | ДИ | | 550 | 500.00 | SURROGATE RADIAN CORP. REPORT Page 12 Received: 03/31/89 Results by Sample SAMPLE ID CARBON TUBE SG-31 FRACTION OGA TEST CODE 8010 Date & Time Collected 03/30/89 NAME HALOGENATED VOLITILE ORGN. Category Work Order # M9-03-049 #### ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS | ANALYST M | 1 | FILE # | | VERIFIE | D MM | |--------------------|--------------------------------|-------------|-----------|---------|---------| | INSTRMT TRACOR | INJECTD 04/05/89 | FACTOR | 200,00 | UNITS | ng/tube | | CAS# | COMPOUND | RESULT | DET LIMIT | FACTOR | | | 74-87-3 | Chloromethane | ND | 1300 | 200.00 | | | 74-83-9 | Bromomethane | | 3000 | 200.00 | | | 74-63-9
75-71-8 | Dichlorodifluoromethane | ND
ND | 20000 | 200.00 | | | 75-71-6 | | ND | 640 | 200.00 | | | | Vinyl Chloride
Chloroethane | | | | | | 75-00-3 | | ND | 440 | 200.00 | | | 75-09-2 | Methylene Chloride | ND | 130 | 200.00 | | | 75-69-4 | Trichlorofluoromethane | ND | 220 | 200.00 | | | 75-35-4 | 1,1-Dichloroethene | ND
10400 | 8.0 | 200.00 | | | 75-34-3 | 1,1-Dichlorgethane | 19400 | 150 | 200.00 | | | 156-60-5 | trans-1,2-Dichloroethene | 71100 | 10 | 200.00 | | | 67-66-3 | Chloroform | ND | 46 | 200.00 | | | 107-06-2 | 1,2-Dichloroethane | ND | 68 | 200,00 | | | 71 -55-6 | 1,1,1-Trichloroethane | 6500 | 30 | 200.00 | | | 56-23-5 | Carbon Tetrachloride | ND | 42 | 200.00 | | | 75-27-4 | Bromodichloromethane | ИD | 98 | 200.00 | | | 78-87-5 | 1,2-Dichloropropane | ND | 58 | 200.00 | | | 10061-02-6 | trans-1,3-Dichloropropene | ND | 240 | 200.00 | | | 79-01-6 | Trichloroethene | ND | 10 | 200.00 | | | 124-48-1 | Dibromochloromethane | ND | 560 | 200.00 | | | 79-00-5 | 1,1,2-Trichloroethane | ND | 200 | 200.00 | | | 10061-01-5 | cis-1,3-Dichloropropene | ND | 320 | 200.00 | | | 100-75-8 | 2-Chloroethylvinyl Ether | ND | 560 | 200.00 | | | 75-25-2 | Bromoform | ND | 9200 | 200.00 | | | 79-34-5 | 1,1,2,2-Tetrachloroethane | ND | 200 | 200.00 | | | 127-18-4 | Tetrachloroethene | ND | 98 | 200.00 | | | | | | | | | SURROGATES 74-97-5 Mixture Bromochloromethane 2-Bromo-1-chloropropane NA % Recovery NA % Recovery RADIAN CORP. REPORT Received: 03/31/89 Results by Sample Page 13 SAMPLE ID CARBON TUBE SG-31 FRACTION OGA TEST CODE 8080B NAME AROMATIC VOLITILE ORGANICS Work Order # M9-03-049 Date & Time Collected 03/30/89 Category #### ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS | | | | | | | | ı | VERIFIED | MM | |--------------------|--|----------|--------|------------|------------------|--------|-------|----------|--------| | ANALYST
INSTRMT | MM
TRACOR | ·I | NJECTD | 04/05/89 | FILE #
FACTOR | 200.00 | UNITS | ng/tube | | | | | CA5+ | ŧ | | СОМРОИМО | RESULT | DE | T LIMIT | FACTOR | | | | 71-43-8 | : | | Benzene | ND | | 40 | 200.00 | | | | 108-88-3 | } | | Toluene | ND | | 74 | 200.00 | | | | 100-41-4 | + | Eth | ylbenzene | ND | | 100 | 200.00 | | | | 108-90-7 | • | Ch1c | probenzene | ND | | 130 | 200.00 | | | | 106-46-7 | • | 1,4-Dichlo | irobenzene | ИD | | 500 | 200.00 | | | | 541-73-1 | | 1,3-Dichlo | robenzene | ND | | 200 | 200.00 | | | | 95-50-1 | : | 1,2-Dichlo | robenzene | ND | | 320 | 200.00 | | | | 108-38-3 | ; | | m-Xylene | 4760 | | 260 | 200.00 | | | and the state of t | Mixture | | <u> </u> | ,p-Xylene | ДИ | · | 220 | 200.00 | SURROGATE #### REPORT RADIAN CORP. Results by Sample SAMPLE ID CARBON TUBE SG-30 FRACTION 07A TEST CODE 8010 Date & Time Collected 03/30/89 NAME HALOGENATED VOLITILE ORGN. Category Work Order # M9-03-049 ## ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS | ANALYST MM | | FILE # | | VERIFIE | D MM | |----------------|---------------------------|--------|-------------|---------|---------| | INSTRMT TRACOR | INJECTD 04/05/89 | FACTOR | 500.00 | UNITS | ng/tube | | ~~~ | /m/mad (% m.l.) b.) 17 | | DET LIMIT | FACTOR | | | CAS# | COMPOUND | RESULT | DET LIMIT | FACTOR | | | 74-87-3 | Chloromethane | ND | 3300 | 500.00 | | | 74-83-9 | Bromomethane | ND | 7500 | 500.00 | | | 75-71-8 | Dichlorodifluoromethane | ND | 50000 | 500.00 | | | 75-01-4 | Vinyl Chloride | ND | 1600 | 500.00 | | | 75-00-3 | Chloroethane | ND | 1100 | 500.00 | | | 75-09-2 | Methylene Chloride | ND | 320 | 500.00 | | | 75-69-4 | Trichlorofluoromethane | ND | 5 50 | 500.00 | | | 75-35-4 | 1,1-Dichloroethene | ND | 20 | 500.00 | | | 75-34-3 | 1,1-Dichloroethane | 5200 | 390 | 500.00 | | | 156-60-5 | trans-1,2-Dichloroethene | 28200 | 25 | 500.00 | | | 67-66-3 | Chloroform | ND | 120 | 500.00 | | | 107-06-2 | 1,2-Dichloroethane | ND | 170 | 500.00 | | | 71-55-6 | 1,1,1-Trichloroethane | 7300 | 75 | 500.00 | | | 56-23-5 | Carbon Tetrachloride | ND | 110 | 500.00 | | | 75-27-4 | Bromodichloromethane | ND | 250 | 500.00 | | | 78-87-5 | 1,2-Dichloropropane | ND | 15 0 | 500.00 | | | 10061-02-6 | trans-1,3-Dichloropropene | ND | 600 | 500.00 | | | 79-01-6 | Trichloroethene | 2060 | 25 | 500.00 | | | 124-48-1 | Dibromochloromethane | ПИ | 1400 | 500.00 | | | 79-00-5 | 1,1,2-Trichloroethane | ND | 500 | 500.00 | | | 10061-01-5 | cis-1,3-Dichloropropene | ND | 800 | 500.00 | | | 100-75-8 | 2-Chloroethylvinyl Ether | ND | 1400 | 500.00 | | | 75-25-2 | Bromoform | ND | 23000 | 500.00 | | | 79-34-5 | 1,1,2,2-Tetrachloroethane | ND | 500 | 500.00 | | | 127-18-4 | Tetrachloroethene | ND | 250 | 500.00 | | | | | | | | | | | | | | | | SURROGATES 74-97-5 Bromochloromethane Mixture 2-Bromo-1-chloropropane NA % Recovery NA % Recovery Page 14 Received: 03/31/89 Page 15 RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 Results by Sample SAMPLE ID CARBON TUBE SG-30 FRACTION 07A TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS Date & Time Collected 03/30/89 Category #### ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS | ANALYST MM | | | FILE # | | VERIFIED | MM | |----------------|---------|-------------|------------|--------|---------------|--------| | INSTRMT TRACOR | INJECTD | 04/05/89 | FACTOR | 500.00 | UNITS ng/tube | | | | CAS# | | COMPOUND | RESULT | DET LIMIT | FACTOR | | 7: | 1-43-2 | | Benzene | ND | 100 | 500.00 | | 108 | E-88-E | | Toluene | ND | 190 | 500.00 | | 100 | 0-41-4 | Ethy | lbenzene | ND | 260 | 500.00 | | 108 | 3-90-7 | Chlor | obenzene | ND | 330 | 500.00 | | 108 | 5-46-7 | 1,4-Dichlor | obenzene | ND | 1300 | 500.00 | | 541 | 1-73-1 | 1,3-Dichlor | obenzene | ND | 500 | 500.00 | | 95 | 5-50-1 | 1,2-Dichlor | obenzene . | ND | 800 | 500.00 | | 108 | 3-38-3 | I | m-Xylene | 780 | 650 | 500.00 | | Mi | ixture | o, | p-Xylene | ND | 550 | 500.00 | SURROGATE RADIAN CORP. Page 17 REPORT Work Order # M9-03-049 Received: 03/31/89 Results by Sample FRACTION OBA TEST CODE 8020B SAMPLE ID CARBON TUBE SG-3 Date & Time Collected 03/30/89 NAME AROMATIC VOLITILE ORGANICS Category ## ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS | ONOLVET | мм | | FILE # | | VERIFIED | MM | |--------------------------|------------|-----------------|------------|--------|---------------|--------| | ANALYST
INSTRMT TRACO | MM
R II | NJECTD 04/05/89 | FACTOR | 500.00 | UNITS ng/tube | | | | CAS# | | СОМРОИИD | RESULT | DET LIMIT | FACTOR | | | 71-43-2 | | Benzene: | ND | 100 | 500.00 | | | 108-88-3 | | Toluene | ND | 190 | 500.00 | | | 100-41-4 | Et | hylbenzene | ND | 260 | 500.00 | | | 108-90-7 | Ch l | orobenzene | ND | 330 | 500.00 | | | 106-46-7 | 1,4-Dichlo | probenzene | ND | 1300 | 500.00 | | | 541-73-1 | 1,3-Dichlo | probenzene | ND | 500 | 500.00 | | | 95-50-1 |
1,2-Dichlo | probenzene | ND | 800 | 500.00 | | | 108-38-3 | | m-Xylene | ND | 650 | 500.00 | | | Mixture | | o,p-Xylene | ND | 550 | 500.00 | SURROGATE a, a, a-Trifluorobenzene 98-08-8 NA% recovery RADIAN CORP. REPORT Work Order # M9-03-049 Received: 03/31/89 Results by Sample Page 18 SAMPLE ID CARBON TUBE SG-8 TEST CODE 8010 NAME HALOGENATED VOLITILE ORGN. FRACTION 09A Date & Time Collected 03/30/89 Category #### ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS | NALYST MM | | FILE # | | VERIFIE | | |------------------|---------------------------|--------|-------------|---|--------------| | NSTRMT TRACOR | INJECTD 04/05/89 | FACTOR | 500.00 | UNITS | ng/tube | | CAS# | СОМРОИND | RESULT | DET LIMIT | FACTOR | | | 74-87-3 | Chloromethane | ND | 3300 | 500.00 | | | 74-83-9 | Bromomethane | ND | 7500 | 500.00 | | | 75-71 <i>-</i> 8 | Dichlorodifluoromethane | ND | 50000 | 500.00 | | | 75-01-4 | Vinyl Chloride | ND | 1600 | 500.00 | | | 75-00-3 | Chloroethane | . ND | 1100 | 500.00 | | | 75-09-2 | Methylene Chloride | ND | 320 | 500.00 | | | 75-69-4 | Trichlorofluoromethane | ND | 550 | 500.00 | | | 75-35-4 | 1,1-Dichloroethene | 1360 | 20 | 500.00 | | | 75-34-3 | 1,1-Dichloroethane | 17200 | 390 | 500.00 | | | 156-60-5 | trans-1,2-Dichloroethene | 14500 | 25 | 500.00 | | | 67-66-3 | Chloroform | ND | 120 | 500.00 | | | 107-06-2 | 1,2-Dichloroethane | ND | 170 | 500.00 | | | 71-55-6 | 1,1,1-Trichloroethane | 60500 | 75 | 500.00 | | | 56-23-5 | Carbon Tetrachloride | ND | 110 | 500.00 | | | 75-27-4 | Bromodichloromethane | ND | 250 | 500.00 | | | 78-87-5 | 1,2-Dichloropropane | ND | 150 | 500.00 | | | 10061-02-6 | trans-1,3-Dichloropropene | ND | 600 | 500.00 | | | 79-01-6 | Trichloroethene | 18000 | 25 | 500.00 | | | 124-48-1 | Dibromochloromethane | ND | 1400 | 500.00 | | | 79-00-5 | 1,1,2-Trichloroethane | ND | 5 00 | 500.00 | | | 10061-01-5 | cis-1,3-Dichloropropene | ND | 800 | 500.00 | | | 100-75-8 | 2-Chloroethylvinyl Ether | ND | 1400 | 500.00 | | | × 75-25-2 | Bromoform | ND | 23000 | 500.00 | | | 79-34-5 | 1,1,2,2-Tetrachloroethane | ND | 500 | 500.00 | | | 127-18-4 | Tetrachloroethene | ND | 250 | 500.00 | | | | | | | | | | | SURROGATES | | | 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 | _ | NA % Recovery 74-97-5 Bromochloromethane Mixture 2-Bromo-1-chloropropane NA % Recovery RADIAN CORP. REPORT Work Order # M9-03-049 Results by Sample SAMPLE ID CARBON TUBE SG-8 Received: 03/31/89 Page 19 FRACTION 09A TEST CODE 8020B Date & Time Collected 03/30/89 NAME AROMATIC VOLITILE ORGANICS Category #### ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS | ANALYST | NALYST MM | | FILE # | | VERIFIED | MM | |----------------|-----------|----------------|-----------|--------|---------------|--------| | INSTRMT TRACOR | | JECTD 04/05/89 | FACTOR | 500.00 | UNITS ng/tube | | | | CAS# | | COMPOUND | RESULT | DET LIMIT | FACTOR | | | 71-43-2 | | Benzene | ND | 100 | 500.00 | | | 108-88-3 | | Toluene | ND | 190 | 500.00 | | | 100-41-4 | Eth | ylbenzene | ND | 260 | 500.00 | | | 108-90-7 | Chlo | robenzene | ND | 330 | 500.00 | | | 106-46-7 | 1,4-Dichlo | robenzene | ND | 1300 | 500.00 | | | 541-73-1 | 1,3-Dichlo | robenzene | ND | 500 | 500.00 | | | 95-50-1 | 1,2-Dichlo | robenzene | ND | 800 | 500.00 | | | 108-38-3 | | m-Xylene | ND | 650 | 500.00 | | | Mixture | | ,p-Xylene | ND | 550 | 500.00 | SURROGATE RADIAN CORP. Results by Sample SAMPLE ID CARBON TUBE SG-37 Received: 03/31/89 Page 20 FRACTION 10A TEST CODE 8010 Date & Time Collected 03/30/89 REPORT NAME HALOGENATED VOLITILE ORGN. Category Work Order # M9-03-049 ## ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS | ANALYST MM | | FILE # | | VERIFIE | | |----------------|-----------------------------|---------------|-------------|---------|---------| | INSTRMT TRACOR | INJECTD 04/05/89 | FACTOR | 500.00 | DNITS | ng/tube | | CAS# | СОМРОИИД | RESULT | DET LIMIT | FACTOR | | | 74-87-3 | Chloromethane | ИD | 3300 | 500.00 | | | 74-83-9 | Bromomethane | ND | 7500 | 500.00 | | | 75-71-8 | Dichlorodifluoromethane | ND | 50000 | 500.00 | | | 75-01-4 | Vinyl Chloride | ДИ | 1600 | 500.00 | | | 75-00-3 | Chloroethane | ND | 1100 | 500.00 | | | 75-09-2 | Methylene Chloride | ND | 320 | 500.00 | | | 75-69-4 | Trichlorofluoromethane | ND | 550 | 500.00 | | | 75-35-4 | 1,1-Dichloroethene | ND | 20 | 500.00 | | | 75-343 | 1,1-Dichloroethame | 960 | 390 | 500.00 | | | 156-60-5 | trans-1,2-Dichloroethene | ND | 25 | 500.00 | | | 67-66-3 | Chloroform | ИN | 120 | 500.00 | | | 107-06-2 | 1,2-Dichloroethane | ND | 170 | 500.00 | | | 71-55-6 | 1,1,1-Trichloroethane | 9740 | 75 | 500.00 | | | 56-23-5 | Carbon Tetrachloride | ND | 110 | 500.00 | | | 75-27-4 | Bromodichloromethane | ND | 250 | 500.00 | | | 78-87-5 | 1,2-Dichloropropane | ND | 150 | 500.00 | | | 10061-02-6 | trans-1,3-Dichloropropene | ND | 6 00 | 500.00 | | | 79-01-6 | Trichloroethene | 2600 | 25 | 500.00 | | | 124-48-1 | Dibromochlorometharie | ND | 1400 | 500.00 | | | 79-00-5 | 1,1,2-Trichloroethane | ND | 500 | 500.00 | | | 10061-01-5 | cis-1,3-Dichloropropene | ND | 800 | 500.00 | | | 100-75-8 | 2-Chloroethylvinyl Ether | ND | 1400 | 500.00 | | | 75-25-2 | Bromoform | ND | 23000 | 500.00 | | | 79-34-5 | · 1,1,2,2-Tetrachloroethane | ND | 500 | 500.00 | • | | 127-18-4 | Tetrachloroethene | ND | 250 | 500.00 | | | | | | | | | | | SURROGATES | | | | | | 74-97-5 | Bromochloromethane | NA % | Recovery | | | | Mixture | 2-Bromo-1-chloropropane | NA / Recovery | | | | RADIAN CORP. REPORT Results by Sample Received: 03/31/89 Results by Sampl Page 21 SAMPLE ID CARBON TUBE SG-37 FRACTION 10A TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS Date & Time Collected 03/30/89 Category Work Order # M9-03-049 ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS | | | | | | | | VERIFIED | MM | |--------------------------|----------|-------|-----------|-------------------|--------|--|----------|--------| | ANALYST
INSTRMT TRACO | s iv | JECTD | 04/05/89 | .FILE #
FACTOR | 500.00 | UNITS | ng/tube | | | | CAS# | | | COMPOUND | RESULT | DΕ | T LIMIT | FACTOR | | | 71-43-2 | | | Benzene | ND | | 100 | 500.00 | | | 108-88-3 | | | Toluene | ND | | 190 | 500.00 | | | 100-41-4 | | Eth | ylberzene | ND | | 260 | 500.00 | | | 108-90-7 | | Chlo | robenzene | ИИ | | 330 | 500.00 | | | 106-46-7 | 1 | ,4-Dichlo | robenzene | ПN | | 1300 | 500.00 | | | 541-73-1 | 1 | ,3-Dichlo | robenzene | ND | | 500 | 500.00 | | | 95-50-1 | 1. | ,2-Dichlo | robenzene | ND | | 800 | 500.00 | | | 108-38-3 | | | m-Xylene | ND | | 650 | 500.00 | | | Mixture | | .0, | ,p-Xylene | ND | 1 mars - 1/4 Miles on mars apply 10 a mars ang | 550 | 500.00 | SURROGATE Page 22 RADIAN CORP. REPORT Work Order # M9-03-045 Received: 03/31/89 Test Methodology TEST CODE 8010 NAME HALOGENATED VOLITILE ORGN. Method not available. TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS Method not available. #### Radian Work Order 89-07-266 # Analytical Report 09/06/89 ERM - North Central ERM North Central 102 Wilmont Road Deerfield, IL 60015 Customer Work Identification Suntec Industries Purchase Order Number 9155 #### Contents: - 1 Analytical Data Summary - 2 Sample History - 3 Comments Summary - 4 Notes and Definitions Radian Corporation 8501 MoPac Boulevard Austin, Texas 78720-1088 512/454-4797 Client Services Coordinator: CSAPPLEGATE certified by: Machail Sugar ERM - North Central Radian Work Order: 89-07-266 | Method:SW8240-Illinois list (1 | 1) | | | | | | |--------------------------------|-------------|---------------------|---------|-------------|---------------|--------------| | List: | | | | | | | | Sample ID: | SB5A | S B5B | SB5C | SB6A | \$ B6B | S 86C | | factor: | 10.000 | 100.000 | 100.000 | 10.000 | 10.000 | 50.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 01 A | 0 2A | 03A | 04 A | 0 5A | 0 6A | | Matrix: | solid | solid | solid | solid | solid | solid | | Benzene | <50 | <500 | <500 | <50 | <50 | <250 | | 1,2-Dichloroethane | <50 | <500 | <500 | <50 | <50 | <250 | | Ethyl benzene | <50 | 780* | <500 | <50 | 97* | 71 0* | | n-Hexane | <100 | <1000 | <1000 | <100 | <100 | <500 | | Toluene | <50 | <u>650</u> * | <500 | <50 | <50 | 250* | | Xyl enes | <150 | 8000 | <1500 | <150 | 1100 | 6600 | | Surrogate Recovery(%) | | | | | | | | 1,4-Bromofluorobenzene | 100 Q | 129 Q | 101 9 | 99 Q | 226 Q | 195 Q | | Control Limits: 62 to 98 | | | | | | | | 1,2-Dichloroethane-d4 | 101 | 103 | 100 | 101 | 98 | 100 | | Control Limits: 91 to 110 | | | | | | | | Toluene-d8 | 103 | 9 9 | 102 | 104 Q | 98 | 99 | | Control Limits: 91 to 103 | | | | | | | Q Outside control limits ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. Tel: (312) 289-3100 Fax: (312) 289-4180 ## **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82427 Sample Description: B B-6-D; B-6 Suntec Date Taken: 05-25-89 1025 Date Received: 05-25-89 1445 Solids, Total 88.01 ફ Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 ## **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82427 Sample Description: B-6-D; B-6 Suntec Date Taken: 05-25-89 1025 Date Received: 05-25-89 1445 #### VOLATILE COMPOUNDS | Acrolein | <10. | u g /g | |---------------------------|------|---------------| | Acrylonitrile | <10. | ug/g | | Benzene | <1.0 | ug/g | | Bromodichloromethane | <1.0 | ug/g | | Bromoform | <1.0 | ug/g | | Bromomethane | <10. | ug/g | | Carbon tetrachloride | <1.0 | ug/g | | Chlorobenzene | <1.0
 ug/g | | Chloroethane | <10. | ug/g | | 2-Chloroethylvinyl ether | <1.0 | ug/g | | Chloroform | <1.0 | ug/g | | Chloromethane | <10. | ug/g | | Dibromochloromethane | <1.0 | ug/g | | 1,2-Dichlorobenzene | <1.0 | ug/g | | 1,3-Dichlorobenzene | <1.0 | ug/g | | 1,4-Dichlorobenzene | <1.0 | ug/g | | 1,1-Dichloroethane | <1.0 | ug/g | | 1,2-Dichloroethane | <1.0 | ug/g | | 1,1-Dichloroethene | <1.0 | ug/g | | cis-1,2-Dichloroethene | <1.0 | ug/g | | trans-1,2-Dichloroethene | <1.0 | ug/g | | 1,2-Dichloropropane | <1.0 | ug/g | | cis-1,3-Dichloropropene | <1.0 | ug/g | | trans-1,3-Dichloropropene | <1.0 | ug/g | | Ethyl benzene | <1.0 | ug /g | Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 # **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82427 Sample Description: B-6-D; B-6 Suntec Date Taken: 05-25-89 1025 Date Received: 05-25-89 1445 | Methylene chloride | <5.0 | ug/g | |---------------------------|------|------| | 1,1,2,2-Tetrachloroethane | <1.0 | ug/g | | Tetrachloroethene | <1.0 | ug/g | | Toluene | <1.0 | ug/g | | 1,1,1-Trichloroethane | <1.0 | ug/g | | 1,1,2-Trichloroethane | <1.0 | uq/q | | Trichloroethene | <1.0 | ug/g | | Trichlorofluoromethane | <1.0 | ug/g | | Vinyl chloride | <10. | uq/q | | Xylenes, Total | <1.0 | ug/g | | Isopropanol | <10. | ug/g | Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 ## **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82428 Sample Description: B- B-5-E Suntec Date Taken: 05-24-89 1730 Date Received: 05-25-89 1445 Solids, Total 91.17 옿 Tel: (312) 289-3100 Fax: (312) 289-4180 ## **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82428 Sample Description: B-5-E Suntec Date Taken: 05-24-89 1730 Date Received: 05-25-89 1445 Solids, Total 91.17 ક્ષ Results on a dry weight basis. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103 Tel: (312) 289-3100 Tel: (312) 289-3100 Fax: (312) 289-4180 ## **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82428 Sample Description: B-5-E Suntec Date Taken: 05-24-89 1730 Date Received: 05-25-89 1445 _ _ #### VOLATILE COMPOUNDS | Acrolein | <10. | ug/ g | |---------------------------|-------|--------------| | Acrylonitrile | <10. | ug/g | | Benzene | <1.0 | ug/g | | Bromodichloromethane | <1.0 | ug/g | | Bromoform | <1.0 | ug/g | | Bromomethane | <10. | ug/g | | Carbon tetrachloride | <1.0 | ug/g | | Chlorobenzene | <1.0 | ug/g | | Chloroethane | <10. | ug/g | | 2-Chloroethylvinyl ether | <1.0 | ug/g | | Chloroform | <1.0 | ug/g | | Chloromethane | <10. | ug/g | | Dibromochloromethane | <1.0 | ug/g | | 1,2-Dichlorobenzene | <1.0 | ug/g | | 1,3-Dichlorobenzene | <1.0 | ug/g | | 1,4-Dichlorobenzene | <1.0 | ug/g | | 1,1-Dichloroethane | <1.0 | ug/g | | 1,2-Dichloroethane | <1.0 | ug/g | | 1,1-Dichloroethene | <1.0 | ug/g | | cis-1,2-Dichloroethene | <1.0 | ug/g | | trans-1,2-Dichloroethene | <1.0 | ug/g | | 1,2-Dichloropropane | <1.0 | ug/g | | cis-1,3-Dichloropropene | <1.0 | ug/g | | trans-1,3-Dichloropropene | <1,.0 | ug/g | | Ethyl benzene | <1.0 | ug/g | Results on a dry weight basis. Tel: (312) 289-3100 Fax: (312) 289-4180 ## **ANALYTICAL REPORT** Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89 Sample No.: 82428 Sample Description: B-5-E Suntec Date Taken: 05-24-89 1730 Date Received: 05-25-89 1445 | Methylene chloride | <5.0 | ug/g | |---------------------------|------|------| | 1,1,2,2-Tetrachloroethane | <1.0 | ug/g | | Tetrachloroethene | <1.0 | ug/g | | Toluene | <1.0 | ug/g | | 1,1,1-Trichloroethane | <1.0 | ug/g | | 1,1,2-Trichloroethane | <1.0 | ug/g | | Trichloroethene | <1.0 | ug/g | | Trichlorofluoromethane | <1.0 | ug/g | | Vinyl chloride | <10. | ug/g | | Xylenes, Total | <1.0 | ug/g | | Isopropanol | <10. | ug/g | Results on a dry weight basis. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103 Tel: (312) 289-3100 Fax: (312) 289-4180 # ANALYTICAL REPORT Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Sample No.: 82429 06-13-89 Deerfield IL 60015 Sample Description: Toluene 1,1,1-Trichloroethane MW-B3; B-3 Suntec Date Taken: 05-25-89 1100 Date Received: 05-25-89 1445 #### VOLATILE COMPOUNDS <10. Acrolein Acrylonitrile <10. <1.0 Benzene Bromodichloromethane <1.0 Bromoform <1.0 Bromomethane <10. Carbon tetrachloride <1.0 <1.0 Chlorobenzene <10. Chloroethane 2-Chloroethylvinyl ether <1.0 Chloroform 2.8 Chloromethane <10. <1.0 Dibromochloromethane 1,2-Dichlorobenzene <1.0 <1.0 1,3-Dichlorobenzene <1.0 1,4-Dichlorobenzene 143. 1,1-Dichloroethane 1,2-Dichloroethane <1.0 1.6 1,1-Dichloroethene cis-1,2-Dichloroethene 318. trans-1,2-Dichloroethene 2.6 1,2-Dichloropropane <1.0 cis-1,3-Dichloropropene <1.0 trans-1,3-Dichloropropene <1.0 Ethyl benzene <1.0 Methylene chloride <5.0 1,1,2,2-Tetrachloroethane <1.0 Tetrachloroethene 62. ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L uq/L ug/L uq/L uq/L ug/L ug/L Neal E. Cleghorn Project Manager <1.0 <1.0 NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103 Tel: (312) 289-3100 Fax: (312) 289-4180 # ANALYTICAL REPORT Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Sample No.: 06-13-89 82429 Sample Description: Deerfield IL 60015 MW-B3; B-3 Suntec Date Taken: 05-25-89 1100 Date Received: 05-25-89 1445 VOLATILE COMPOUNDS 1,1,2-Trichloroethane <1.0 1,1,2-Trichloroethane<1.0</td>ug/LTrichloroethene118.ug/LTrichlorofluoromethane<1.0</td>ug/LVinyl chloride<10.</td>ug/LXylenes, Total<1.0</td>ug/L Isopropanol <10. mg/L Neal E. Cleghorn Project Manager | Method:SW8240-Illinois list (1 | • | | | | | | |--------------------------------|---------|---------|-------------|---------------|--------------|-------| | List: | | | | | | | | Sample ID: | SB7A | SB79 | SB8A | S B8B | S 88C | SB9A | | Factor: | 100.000 | 100.000 | 100.000 | 50.000 | 100.000 | 1.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 07A | A80 | 0 9A | 10A | 11A | 12A | | Matrix: | solid | solid | solid | solid | solid | solid | | Benzene | <500 | <500 | <500 | <250 | <500 | <5.0 | | 1,2-Dichloroethane | <500 | <500 | <500 | <250 | <500 | <5.0 | | Ethyl benzene | <500 | <500 | <500 | <250 | <500 | <5.0 | | n-Hexane | <1000 | <1000 | <1000 | <500 | <1000 | <10 | | Tol uene | <500 | <500 | <500 | 560* | <500 | <5.0 | | Xylenes | 22000 | 9800 | <1500 | 9000 | 3200* | <15 | | Surrogate Recovery(%) | | • | | | | | | 1,4-Bromofluorobenzene | 236 Q | 206 9 | 93 | 2 26 Q | 144 Q | 99 Q | | Control Limits: 62 to 98 | | | | | | | | 1,2-Dichloroethane-d4 | 101 | 99 | 101 | 94 | 91 | 102 | | Control Limits: 91 to 110 | | | | | | | | Toluene-d8 | 101 | 102 | 100 | 99 | 99 | 101 | | Control Limits: 91 to 103 | | | | | | | Q Outside control limits ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8240-Illinois list (1 |) | | | | |--------------------------------|-------------|-------------|--------------|--| | List: | | | | | | Sample ID: | SB9B | SB9C | SYSTEM BLANK | | | Factor: | 1.000 | 1.000 | 1.000 | | | Results in: | ug/Kg | ug/Kg | ug/Kg | | | | 13 A | 14 A | 1 5A | | | Matrix: | solid | solid | solid | | | Benzene | <5.0 | <5.0 | <5.0 | | | 1,2-Dichloroethane | <5.0 | <5.0 | <5.0 | | | Ethyl benzene | <5.0 | <5.0 | <5.0 | | | n-Hexane | <10 | <10 | <10 | | | Toluene | <5.0 | <5.0 | <5.0 | | | Xyl enes | <15 | <15 | <15 | | | Surrogate Recovery(%) | | | | | | 1,4-Bromofluorobenzene | 99 Q | 98 | 94 | | | Control Limits: 62 to 98 | | | | | | 1,2-Dichloroethane-d4 | 100 | 102 | 97 | | | Control Limits: 91 to 110 | | | | | | Toluene-d8 | 96 | 99 | 104 @ | | | Control Limits: 91 to 103 | | | | | Q Outside control limits ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ERM · North Central | Method:SW8240-Volatile Organic | s (1) | | | | | | |--------------------------------|-------------|-------------|--------------|--------|--------------|--------| | List:8240 Table 1 | | | | | | | | Sample ID: | SB5A | SB5B | SB5C | SB6A | S B6B | SB6C | | Factor: | 10.000 | 100.000 | 100.000 | 10.000 | 10.000 | 50.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 0 1B | 02 B | 03 B | 048 | 0 5B | 068 | | Matrix: | solid | solid | solid | solid | solid | solid | | Acetone | <1000 | <10000 | <10000 | <1000 | <1000 | <5000 | | Acrolein | <750 | <7500 | <7500 | <750 | <750 | <3800 | | Acrylonitrile | <250 | <2500 | <2500 | <250 | <250 | <1300 | | Benzen e | <50 | <500 | <500 | <50 | <50 | <250 | | Bromodichloromethane | <50 | <500 | <500 | <50 | <50 | <250 | | 8romometh ane | <100 | <1000 | <1000 | <100 | <100 | <500 | | Carbon disulfide | <50 | <500 | <50 0 | <50 | <50 | <250 | | Carbon tetrachloride | <50 | <500 | <50 0 | <50 | <50 | <250 | | Chlorobenzene | <50 | <500 | <500 | <50 | <50 | <250 | | Chloroethane | <100 | <1000 | <1000 | <100 | <100 | <500 | | 2-Chloroethyl vinyl ether | <100 | <1000 | <1000 | <100 | <100 | <500 | | Chloroform | <50 | <500 | <500 | <50 | <50 | <250 | | Chloromethane | <100 | <1000 | <1000 | <100 | <100 | <500 | | Dibromochloromethane | <50 | <500 | <500 | <50 | <50 | <250 | | Dibromomethane | <50 | <500 | <500 | <50 | <50 | <250 | | trans-1,4-Dichloro-2-butene | <50 | <500 | <500 | <50 | <50 | <250 | | Dichlorodifluoromethane | <50 | 3300 | <500 | <50 | <50 | <250 | | 1,1-Dichloroethane | <50 | <500 | <500 | <50 | <50 | <250 | | 1,2-Dichloroethane | <50 | <500 | <500
| <50 | <50 | <250 | | 1,1-Dichloroethene | <50 | <500 | <500 | <50 | <50 | <250 | | trans-1,2-Dichloroethene | <50 | <500 | <500 | <50 | <50 | <250 | | 1,2-Dichloropropane | <50 | <500 | <500 | <50 | <50 | <250 | | cis-1,3-Dichloropropene | <50 | <500 | <500 | <50 | <50 | <250 | | trans-1,3-Dichloropropene | <50 | <500 | <500 | <50 | <50 | <250 | | Ethyl benzene | <50 | <500 | <500 | <50 | 97* | 700* | | Ethyl methacrylate | <50 | <500 | <500 | <50 | <50 | <250 | | 2-Hexanone | <500 | <5000 | <5000 | <500 | <500 | <2500 | | Iodomethane | <50 | <500 | <500 | <50 | <50 | <250 | | Methyl ethyl ketone | <1000 | <10000 | <10000 | <1000 | <1000 | <5000 | | 4-Methyl-2-pentanone(MIBK) | <500 | <5000 | <5000 | <500 | <500 | <2500 | ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ERM - North Central | Method:SW8240-Volatile Organic | s (1) | | | | | | |--------------------------------|--------|--------------|--------------|--------|--------------|-------------| | List:8240 Table 1 | | | | | | | | Sample ID: | S85A | SB 5B | SB5C | SB6A | SB 68 | SB6C | | Factor: | 10.000 | 100.000 | 100.000 | 10.000 | 10.000 | 50.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 01B | 02 8 | 038 | 048 | 0 5B | 06 B | | Matrix: | solid | solid | solid | solid | solid | solid | | Methylene chloride | <50 | <500 | <500 | <50 | <50 | <250 | | Styrene | <50 | <50 0 | <500 | <50 | <50 | <250 | | 1,1,2,2-Tetrachloroethane | <50 | <500 | <500 | <50 | <50 | <250 | | Tetrachloroethene | <50 | 2500 | <500 | <50 | 280 | 1600 | | Toluene | <50 | <500 | <500 | <50 | <50 | 250* | | Tribromomethane(Bromoform) | <50 | <500 | <500 | <50 | <50 | <250 | | 1,1,1-Trichtoroethane | <50 | 6200 | <500 | <50 | 54* | 1400 | | 1,1,2-Trichloroethane | <50 | <500 | <50 0 | <50 | <50 | <250 | | Trichloroethene | <50 | 3800 | <500 | <50 | <50 | <250 | | Trichlorofluoromethane | <50 | <500 | <500 | <50 | <50 | <250 | | 1,2,3-Trichloropropane | <50 | <500 | <500 | <50 | <50 | <250 | | Vinyl acetate | <50 | <500 | <500 | <50 | <50 | <250 | | Vinyl chloride | <100 | <1000 | <1000 | <100 | <100 | <500 | | Xylenes | <50 | 8000 | <500 | <50 | 1100 | 6600 | | Surrogate Recovery(%) | | | | | | | | 1,4-Bromofluorobenzene | 100 9 | 129 Q | 101 Q | 99 Q | 226 Q | 195 Q | | Control Limits: 62 to 98 | | | | | | | | 1,2-Dichloroethane-d4 | 101 | 103 | 100 | 101 | 98 | 99 | | Control Limits: 91 to 110 | | | | | | | | Toluene-d8 | 103 | 99 | 102 | 104 Q | 98 | 99 | | Control Limits: 91 to 103 | | | | | | | Q Outside control limits ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ERM - North Central | Method:SW8240-Volatile Organic | s (1) | | | | | | |---------------------------------------|---------|---------|--------------|--------------|---------|--------------| | List:8240 Table 1 | - | | | | | | | Sample ID: | SB7A | SB78 | SB8A | S B8B | SB8C | S B9A | | Factor: | 100.000 | 100.000 | 100.000 | 50.000 | 100.000 | 1.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 078 | 088 | 098 | 10B | 118 | 12B | | Matrix: | solid | solid | solid | solid | solid | solic | | Acetone | <10000 | <10000 | <10000 | <5000 | <10000 | <100 | | Acrolein | <7500 | <7500 | <7500 | <3800 | <7500 | <75 | | Acrylonitrile | <2500 | <2500 | <2500 | <1300 | <2500 | <25 | | Benzen e | <500 | <500 | <500 | <250 | <500 | <5.0 | | Bromodichloromethane | <500 | <500 | <50 0 | <250 | <500 | <5.0 | | 3romomethane | <1000 | <1000 | <1000 | <500 | <1000 | <10 | | Carbon disulfide | <500 | <500 | <500 | <250 | <500 | <5.0 | | Carbon tetrachloride | <500 | <500 | <500 | <250 | <500 | <5.0 | | Chlorobenzene | <500 | <500 | <500 | <250 | <500 | <5.0 | | Chloroethane | <1000 | <1000 | <1000 | <500 | <1000 | <10 | | 2-Chloroethyl vinyl ether | <1000 | <1000 | <1000 | <500 | <1000 | <10 | | Chloroform | <500 | <500 | <500 | <250 | <500 | <5.0 | | Chloromethane | <1000 | <1000 | <1000 | <500 | <1000 | <10 | | Dibromochloromethane | <500 | <500 | <500 | <250 | <500 | <5.0 | | Dibromomethane | <500 | <500 | <500 | <250 | <500 | <5.0 | | trans-1,4-Dichloro-2-butene | <500 | <500 | <500 | <250 | <500 | <5.0 | | Dichlorodifluoromethane | <500 | <500 | <500 | <250 | <500 | <5.0 | | 1,1-Dichloroethane | <500 | <500 | <500 | <250 | <500 | <5.0 | | 1,2-Dichloroethane | <500 | <500 | <500 | <250 | <500 | <5.0 | | 1,1-Dichloroethene | <500 | <500 | <500 | <250 | <500 | <5.0 | | trans-1,2-Dichloroethene | <500 | <500 | <500 | <250 | <500 | <5.0 | | 1,2-Dichloropropane | <500 | <500 | <500 | <250 | <500 | <5.0 | | cis-1,3-Dichloropropene | <500 | <500 | <500 | <250 | <500 | <5.0 | | trans-1,3-Dichtoroprop ene | <500 | <500 | <500 | <250 | <500 | <5.0 | | Ethyl benzene | <500 | <500 | <500 | <250 | <500 | <5.0 | | Ethyl methacrylate | <500 | <500 | <500 | <250 | <500 | <5.0 | | 2-Hexanone | <5000 | <5000 | <5000 | <2500 | <5000 | <50 | | Iodomethane | <500 | <500 | <500 | <250 | <500 | <5.0 | | Methyl ethyl ketone | <10000 | <10000 | <10000 | <5000 | <10000 | <100 | | 4-Methyl-2-pentanone(MIBK) | <5000 | <5000 | <5000 | <2500 | <5000 | <50 | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ERM - North Central | Method:SW8240-Volatile Organic | s (1) | | | | | | |--------------------------------|--------------|---------------|--------------|---------------|--------------|-------| | List:8240 Table 1 | | | | | | | | Sample ID: | SB7A | S 8.7B | SB8A | S B8B | S 88C | SB9A | | Factor: | 100.000 | 100.000 | 100.000 | 50.000 | 100.000 | 1.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | u g/Kg | ug/Kg | ug/Kg | | | 0 7B | 0 8B | 09 B | 10B | 11B | 128 | | Matrix: | solid | solid | solid | solid | solid | solid | | Methylene chloride | <500 | <500 | <500 | <250 | <500 | <5.0 | | Styrene | <500 | <500 | <500 | <250 | <500 | <5.0 | | 1,1,2,2-Tetrachloroethane | <500 | <500 | <500 | <250 | <500 | <5.0 | | Tetrachloroethene | <500 | <500 | <500 | <250 | 1500* | <5.0 | | Toluene | <500 | <500 | <500 | 550* | <500 | <5.0 | | Tribromomethane(Bromoform) | <500 | <500 | <500 | <250 | <500 | <5.0 | | 1,1,1-Trichloroethane | <500 | <500 | <500 | <250 | <500 | <5.0 | | 1,1,2-Trichloroethane | <50 0 | <500 | <50 0 | <250 | <500 | <5.0 | | Trichloroethene | <500 | <500 | <50 0 | <250 | <500 | <5.0 | | Trichtorofluoromethane | <500 | <500 | <50 0 | <250 | <500 | <5.0 | | 1,2,3-Trichloropropane | <500 | <500 | <500 | <250 | <500 | <5.0 | | Vinyl acetate | <500 | <500 | <500 | <250 | <500 | <5.0 | | Vinyl chloride | <1000 | <1000 | <1000 | <500 | <1000 | <10 | | Xylenes | 22.000 | 9800 | <500 | 9000 | 3200 | <5.0 | | Surrogate Recovery(%) | | | | | | | | 1,4-Bromofluorobenzene | 236 Q | 206 Q | 93 | 226 Q | 144 Q | 99 Q | | Control Limits: 62 to 98 | | | | | | | | 1,2-Dichloroethane-d4 | 101 | 99 | 10 1 | 94 | 91 | 102 | | Control Limits: 91 to 110 | | | | | | | | Toluene-d8 | 101 | 102 | 100 | 99 | 99 | 101 | | Control Limits: 91 to 103 | | | | | | | Q Outside control limits ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8240-Volatile Organic | s (1) | | | | |--------------------------------|-------|-------|--------------|--| | List:8240 Table 1 | | | | | | Sample ID: | S89A | SB9C | SYSTEM BLANK | | | Factor: | 1.000 | 1.000 | 1.000 | | | Results in: | ug/Kg | ug/Kg | ug/Kg | | | | 13B | 148 | 15B | | | Matrix: | solid | solid | solid | | | Acetone | <100 | <100 | <100 | | | Acrolein | <75 | <75 | <75 | | | Acrylonitrile | <25 | <25 | <25 | | | Benzene | <5.0 | <5.0 | <5.0 | | | Bromodichloromethane | <5.0 | <5.0 | <5.0 | | | Bromomethane | <10 | <10 | <10 | | | Carbon disulfide | <5.0 | <5.0 | <5.0 | | | Carbon tetrachloride | <5.0 | <5.0 | <5.0 | | | Chlorobenzene | <5.0 | <5.0 | <5.0 | | | Chloroethane | <10 | <10 | <10 | | | 2-Chloroethyl vinyl ether | <10 | <10 | <10 | | | Chloroform | <5.0 | <5.0 | <5.0 | | | Chloromethane | <10 | <10 | <10 | | | ibromochloromethane | <5.0 | <5.0 | <5.0 | | | Oibromomethane | <5.0 | <5.0 | <5.0 | | | trans-1,4-Dichloro-2-butene | <5.0 | <5.0 | <5.0 | | | Dichlorodifluoromethane | <5.0 | <5.0 | <5.0 | | | 1,1-Dichloroethane | <5.0 | <5.0 | <5.0 | | | 1,2-Dichloroethane | <5.0 | <5.0 | <5.0 | | | 1,1-Dichloroethene | <5.0 | <5.0 | <5.0 | | | trans-1,2-Dichloroethene | <5.0 | <5.0 | <5.0 | | | 1,2-Dichloropropane | <5.0 | <5.0 | <5.0 | | | cis-1,3-Dichloropropene | <5.0 | <5.0 | <5.0 | | | trans-1,3-Dichloropropene | <5.0 | <5.0 | <5.0 | | | Ethyl benzene | <5.0 | <5.0 | <5.0 | | | Ethyl methacrylate | <5.0 | <5.0 | <5.0 | | | 2-Hexanone | <50 | <50 | <50 | | | Iodomethane | <5.0 | <5.0 | <5.0 | | | Methyl ethyl ketone | <100 | <100 | <100 | | | 4-Methyl-2-pentanone(MIBK) | <50 | <50 | <50 | | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8240-Volatile Organic | s (1) | | | | |--------------------------------|---------------|-------|--------------|--| | List:8240 Table 1 | | | | | | Sample ID: | SB9A | SB9C | SYSTEM BLANK | | | Factor: | 1.000 | 1.000 | 1.000 | | | Results in: | u g/Kg | ug/Kg | ug/Kg | | | | 13B | 148 | 158 | | | Matrix: | solid | solid | solid | | | Methylene chloride | <5.0 | <5.0 | <5.0 | | | Styrene | <5.0 | <5.0 | <5.0 | | | 1,1,2,2-Tetrachloroethane | <5.0 | <5.0 | <5.0 | | | Tetrachloroethene | <5.0 | <5.0 | <5.0 | | | Toluene | <5.0 | <5.0 | <5.0 | | | Tribromomethane(Bromoform) | <5.0 | <5.0 | <5.0 | | | 1,1,1-Trichloroethane | <5.0 | <5.0 | <5.0 | | | 1,1,2-Trichloroethane | <5.0 | <5.0 |
<5.0 | | | Trichloroethene | <5.0 | <5.0 | <5.0 | | | Trichlorofluoromethane | <5.0 | <5.0 | <5.0 | | | 1,2,3-Trichloropropane | <5.0 | <5.0 | <5.0 | | | Vinyl acetate | <5.0 | <5.0 | <5.0 | | | Vinyl chloride | <10 | <10 | <10 | | | Xylenes | <5.0 | <5.0 | <5.0 | | | Surrogate Recovery(%) | | | | | | 1,4-Bromofluorobenzene | 98 | 98 | 94 | | | Control Limits: 62 to 98 | | | | | | 1,2-Dichloroethane-d4 | 100 | 102 | 97 | | | Control Limits: 91 to 110 | | | | | | Toluene-d8 | 96 | 99 | 104 Q | | | Control Limits: 91 to 103 | | | | | Q Outside control limits ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | <pre>Method:SW8270-Illinois list (List:</pre> | - | | | | | | |---|--------|--------------|--------------|--------------|------------------|--------------| | Sample ID: | SB5A | SB5B | SB5C | SB6A | \$ 868 | S 86C | | F | 3.000 | 1.000 | 1.000 | 3.000 | 1,000 | 1 000 | | Factor: | | | | | | 1.000 | | Results in: | ug/kg | ug/kg
02B | ug/kg
038 | ug/kg | ug/kg | ug/kg | | | 01B | | | 048 | 05 B | 06 B | | Matrix: | solid | solid | solid | solid | solid | solic | | Acenaph thene | <3600 | <1200 | <1200 | <3600 | <1200 | <1200 | | Acenaph thy lene | <2000 | <660 | <660 | <2000 | <660 | <660 | | Anthracene | <2000 | <660 | <660 | <2000 | <660 | <660 | | Benzo(a)anthracene | <26 | 54 | 61 | 140 | 70 | 17* | | Benzo(a)pyrene | <45 | <15 | <15 | 63* | 32* | <15 | | Benzo(b)fluoranthene | <36 | <12 | 21* | 140* | 40* | <12 | | Benzo(g,h,i)perylene | <150 | <51 | <51 | <150 | <51 | <51 | | Benzo(k)fluoranthene | <33 | <11 | <11 | 100* | 32* | <11 | | Chrysene | <300 | <100 | <100 | <300 | <100 | <100 | | Dibenz(a,h)anthracene | <60 | <20 | <20 | <60 | <20 | <20 | | Fluoranthene | <420 | <140 | <140 | 660* | 280* | <140 | | fluorene | , <420 | <140 | 690* | <420 | <140 | <140 | | Indeno(1,2,3-cd)pyrene | <87 | <29 | <29 | <87 | <29 | <29 | | Naphthalene | <2000 | <660 | 1100* | <2000 | 800* | <660 | | Phenanthrene | <2000 | <660 | 1200* | <2000 | <660 | <660 | | Pyrene | <540 | <180 | 210* | <u>800*</u> | <u>250*</u> | <180 | | Surrogate Recovery(%) | | | | | | | | 2-Fluorobiphenyl | 100 | 105 | 108 | 117 | 106 | 80 | | Control Limits: 33 to 153 | | | _ | - | · - - | | | 2-Fluorophenol | 93 | 95 | 107 | 102 | 99 | 51 | | Control Limits: 20 to 158 | | | | | | • | | Nitrobenzene-d5 | 83 | 88 | 91 | 89 | 93 | 48 | | Control Limits: 21 to 159 | | | | | | | | Phenol-d5 | 90 | 94 | 94 | 92 | 98 | 61 | | Control Limits: 27 to 154 | | | | | | | | Terphenyl-d14 | 86 | 79 | 136 | 115 | 77 | 80 | | Control Limits: 0 to 223 | | | | - | | | | 2,4,6-Tribromphenol | 95 | 91 | 84 | 82 | 96 | 89 | | Control Limits: 0 to 179 | | | | | = | | ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds. | Method:SW8270-Illinois list (1 |) | | | | | | |--------------------------------|-------------|--------------|-------------|--------------|-------|------------| | List: | | | | | | | | Sample ID: | SB7A | S 87B | SB8A | S 888 | SB8C | SB9A | | Factor: | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | | Results in: | ug/kg | ug/kg | ug/kg | ug/kg | ug/kg | ug/kg | | | 0 7B | 8 8 0 | 0 98 | 10 B | 11B | 12B | | Matrix: | solid | solid | solid | solid | solid | solic | | Acenaphthene | <3600 | <3600 | <3600 | <3600 | <3600 | <3600 | | Acenaph thy Lene | <2000 | <2000 | <2000 | <2000 | <2000 | <2000 | | Anthracene | <2000 | <2000 | <2000 | <2000 | <2000 | <2000 | | Benzo(a)anthracene | 150 | <u>38*</u> | <26 | 39* | <26 | 110* | | Benzo(a)pyrene | 69* | <45 | <45 | <45 | <45 | 100* | | Benzo(b)fluoranthene | 81* | <36 | <36 | <36 | <36 | 91* | | Benzo(g,h,i)perylene | <150 | <150 | <150 | <150 | <150 | <150 | | Benzo(k)fluoranthene | 82* | <33 | <33 | <33 | <33 | 79* | | Chrysene | <300 | <300 | <300 | <300 | <300 | <300 | | Dibenz(a,h)anthracene | <60 | <60 | <60 | <60 | <60 | <60 | | Fluoranthene | <420 | <420 | <420 | <420 | <420 | <420 | | Fluorene | <420 | <420 | <420 | <420 | <420 | <420 | | Indeno(1,2,3-cd)pyrene | <87 | <87 | <87 | <87 | <87 | <87 | | Naphtha Lene | 2500* | <2000 | <2000 | <2000 | <2000 | <2000 | | Phenanthrene ' | <2000 | <2000 | <2000 | <2000 | <2000 | <2000 | | Pyrene | <540 | <540 | <540 | <540 | <540 | <540 | | Surrogate Recovery(%) | | | | | | | | 2-Fluorobiphenyl | 102 | 104 | 86 | 101 | 85 | 88 | | Control Limits: 33 to 153 | | | | | | | | 2-Fluorophenol | 94 | 82 | 83 | 77 | 66 | 85 | | Control Limits: 20 to 158 | | | | | | | | Nitrobenzene-d5 | 82 | 78 | 84 | 80 | 64 | 89 | | Control Limits: 21 to 159 | | | | | | | | Phenol-d5 | 84 | 80 | 80 | 82 | 70 | 76 | | Control Limits: 27 to 154 | | | | | | | | Terphenyl-d14 | 81 | 81 | 86 | <i>7</i> 3 | 86 | 8 8 | | Control Limits: 0 to 223 | | | | | | | | 2,4,6-Tribromphenol | 77 | 85 | 99 | 95 | 93 | 91 | | Control Limits: 0 to 179 | | | | | | | ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds. | Method:SW8270-Illinois list (1) |) | | | | |---------------------------------|-------|--------------|---------------|--| | List: | | | | | | Sample ID: | SB9A | S B9C | REAGENT BLANK | | | Factor: | 1.000 | 1.000 | 1.000 | | | Results in: | ug/kg | ug/kg | ug/kg | | | | 13B | 148 | 16A | | | Matrix: | solid | solid | solid solid | | | Acenaph thene | <1200 | <1200 | <1200 | | | Acenaphthylene | <660 | <660 | <660 | | | Anthracene | <660 | <660 | <660 | | | Benzo(a)anthracene | <8.7 | <8.7 | <8.7 | | | Benzo(a)pyrene | <15 | <15 | <15 | | | Benzo(b)fluoranthene | <12 | <12 | <12 | | | Benzo(g,h,i)perylene | <51 | <51 | <51 | | | Benzo(k)fluoranthene | <11 | <11 | <11 | | | Chrysene | <100 | <100 | <100 | | | Dibenz(a,h)anthracene | <20 | <20 | <20 | | | Fluoranthene | <140 | <140 | <140 | | | Fluorene | <140 | <140 | <140 | | | Indeno(1,2,3-cd)pyrene | <29 | <2 9 | <29 | | | Naphthalene | <660 | <660 | <660 | | | Phenanthrene | <660 | <660 | <660 | | | Pyrene | <180 | <180 | <180 | | | Surrogate Recovery(%) | | | | | | 2-Fluorobiphenyl | 88 | 81 | 92 | | | Control Limits: 33 to 153 | | | | | | 2-Fluorophenol | 81 | 80 | 83 | | | Control Limits: 20 to 158 | | | | | | Nitrobenzene-d5 | 79 | 77 | 80 | | | Control Limits: 21 to 159 | | | | | | Phenoi -d5 | 81 | 78 | 83 | | | Control Limits: 27 to 154 | | | | | | Terphenyl-d14 | 94 | 86 | 90 | | | Control Limits: 0 to 223 | | | | | | 2,4,6-Tribromphenol | 95 | 85 | 96 | | | Control Limits: 0 to 179 | | | | | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds. ERM - North Central | Method:SW8270-Semi-Volatiles (| 1) | | |--------------------------------|----------------|----------| | List:Matrix Spike List | | | | Sample ID: | SB7A MS | SB7A MSD | | Factor: | 0.0 | 0.0 | | Results in: | × | × | | | 0 7C | 070 | | Matrix: | solid | solid | | Acenaphthene | 84 | 86 | | 4-Chloro-3-methylphenol | 122 | 114 | | 2-Chlorophenol | 92 | 92 | | 1,4-Dichlorobenzene | 92 | 91 | | 2,4-Dinitrotoluene | 108 | 110 | | N-Nitrosodipropylamine | 101 | 101 | | 4-Nitrophenol | 111 | 116 | | Pentachlorophenol | 114 | 121 | | Phenol | 94 | 94 | | Pyrene | 134 | 135 | | 1,2,4-Trichlorobenzene | 86 | 92 | | Surrogate Recovery(%) | | | | 2-Fluorophenol | 112 | 106 | | Control Limits: 20 to 158 | | | | Phenot-d5 | 118 | 115 | | Control Limits: 27 to 154 | | | | Nitrobenzene-d5 | 91 | 106 | | Control Limits: 21 to 159 | | | | 2-Fluorobiphenyl | 131 | 131 | | Control Limits: 33 to 153 | | | | 2,4,6-Tribromophenol | 83 | 84 | | Control Limits: 0 to 179 | | | | Terphenyl-d14 | 84 | 86 | | Control Limits: 0 to 223 | *** | | | CONTROL FIBRICS: U CO 223 | | | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ERM - North Central Radian Work Order: 89-07-266 | | sample in | dentifications : | and pates | | | | |-------------------------|------------------|-------------------|-------------|----------|--------------|-------------| | Sample ID | SBSA | S85B | SBSC | SB6A | S B6B | S86C | | Date Sampled | 07/25/89 | 07/25/89 | 07/25/89 | 07/24/89 | 07/24/89 | 07/24/89 | | Date Received | 0 7/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | | Matrix | solid | solid | solid | solid | solid | solid | | | 01 | 02 | 03 | 04 | 05 | 06 | | /8240-Illinois list | | | | | | | | Prepared | 08/02/89 | 08/03/89 | 08/03/89 | 08/03/89 | 08/03/89 | 08/03/89 | | Analyzed | 08/02/89 | 08/03/89 | 08/03/89 | 08/03/89 | 08/03/89 | 08/03/89 | | Analyst | MCL | MCL | MCL | MCL | MCL | MCL | | File ID | 74465 | 74487 | 74488 | 74482 | 74483 | 74484 | | Report as | received | received | received | received | received | received | | /8240-Volatile Organics | | | | | | | | Prepared | 08/02/89 | 08/03/89 | 08/03/89 | 08/03/89 | 08/03/89 | 08/03/89 | | Analyzed | 08/02/89 | 08/03/89 | 08/03/89 | 08/03/89 | 08/03/89 | 08/03/89 | | Analyst | MCL | MCL | MCL | MCL | MCL | MCL | | File ID | 74465 | 74487 | 74488 | 74482 | 74483 | 74484 | | Report as | received | received | received | received | received | received | | 8270-Illinois list | | | | | | | | Prepared | 08/02/89 | 08/02/89 | 08/02/89 | 08/02/89 | 08/02/89 | 08/02/89 | | Analyzed | 08/07/89 | 08/07/89 | 08/88/89 | 08/08/89 | 08/07/89 | 08/07/89 | | Analyst | MCK | MCK | MCK | MCK |
MCK | MCK | | File ID | 82173 | 821 79 | 82186 | 82191 | 82178 | 82175 | | Report as | received | received | received | received | received | received | | | Samp | le Identifications | and Dates | | | | |---------------------|--------------|--------------------|-----------|--------------|------------------|----------| | Sample ID | SB7A | SB78 | SB8A | SB 8B | SB8C | SB9A | | Date Sampl | ed 07/25/8 | 9 07/25/89 | 07/25/89 | 07/25/89 | 07/25/89 | 07/25/89 | | Date Recei | ved 07/27/8 | 9 07/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | | Matrix | solid | solid | solid | solid | solid | solid | | | 07 | 08 | 09 | 10 | 11 | 12 | | :48240-Illinois lis | t | | | | | | | Prepa | red 08/03/8 | 9 08/03/89 | 08/03/89 | 08/07/89 | 08/07/89 | 08/04/89 | | Analy | zed 08/03/8 | 9 08/03/89 | 08/03/89 | 08/07/89 | 08/07/89 | 08/04/89 | | Analy | st MCL | MCL | MCL | MCL | MCL | MCL | | File | 10 74489 | 74490 | 74491 | 74528 | 74529 | 74515 | | Repor | t as receive | d received | received | received | received | received | | W8240-Volatile Org | anics | | | | | | | Prepa | red 08/03/8 | 9 08/03/89 | 08/03/89 | 08/07/89 | 0 8/07/89 | 08/04/89 | | Analy | zed 08/03/8 | 9 08/03/89 | 08/03/89 | 08/07/89 | 08/07/89 | 08/04/89 | | Analy | st MCL | MCL | MCL | MCL | MCL | MCL | | File | 10 74489 | 74490 | 74491 | 74528 | 74529 | 74515 | | Repor | t as receive | d received | received | received | received | receive | | :8270-Illinois lis | t | | | | | | | Prepa | red 08/02/8 | 9 08/02/89 | 08/02/89 | 08/02/89 | 08/02/89 | 08/02/89 | | Analy | zed 08/08/8 | 9 08/08/89 | 08/07/89 | 08/07/89 | 08/07/89 | 08/08/89 | | Analy | st MCK | MCK | MCK | MCK | MCK | MCK | | File | 10 82188 | 82185 | 82177 | 82176 | 82180 | 82187 | | Repor | t as receive | d received | received | received | received | received | | 8270-Semi-Volatii | es | | | | | | | Prepa | red 08/02/8 | 9 | | | | | | Analy | zed 08/08/8 | 9 | | | | | | Analy | | | | | | | | File | ID 82190 | | | | | | | Repor | t as receive | d | | | | | ERM - North Central Radian Work Order: 89-07-266 | | | Sample I | dentifications a | and Dates | | | |------------------|---------|--------------|------------------|---------------|---------------|--| | Sample 1 | D | S B9B | S 89C | SYSTEM BLANK | REAGENT BLANK | | | Date Sam | pled | 07/25/89 | 07/25/89 | | | | | Date Rec | e i ved | 07/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | | | Matrix | | solid | solid | solid | solid | | | | | 13 | 14 | 15 | 16 | | | W8240-Illinois l | ist | | | | | | | Pre | pared | 08/04/89 | 08/05/89 | 08/03/89 | | | | Ana | lyzed | 08/04/89 | 08/05/89 | 08/03/89 | | | | Ana | lyst | MCL | MCL | MCL | | | | Fil | e ID | 74516 | 74517 | 744 77 | | | | Rep | ort as | received | received | received | | | | ₩8240-Volatile O | rganics | | | | | | | Pre | pared | 08/04/89 | 08/05/89 | 08/03/89 | | | | Ana | lyzed | 08/04/89 | 08/05/89 | 08/03/89 | | | | Ana | lyst | MCL | MCL | MCL | | | | Fil | e ID | 74516 | 74517 | 74 477 | | | | Rep | ort as | received | received | received | | | | 8270-Illinois l | ist | | | | | | | Pre | pared , | 08/02/89 | 08/02/89 | | 08/02/89 | | | Ana | lyzed | 08/07/89 | 08/07/89 | | 08/07/89 | | | Ana | lyst | MCK | MCK | | MCK | | | File | e ID | 82172 | 82174 | | 82171 | | | Rep | ort as | received | received | | received | | ## Appendix A Comments, Notes and Definitions - A This flag indicates that a spike is an analytical and/or postdigestion spike. These spikes have not been subjected to the extraction or digestion step. - B This flag indicates that the analyte was detected in the reagent blank but the sample results are not corrected for the amount in the blank. - C Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The C flag indicates that the analyte has been confirmed by analysis on a second column. - D This flag identifies all analytes identified in analysis at a secondary dilution factor. In an analysis some compounds can exceed the calibration range of the instrument. Therefore two analyses are performed, one at the concentration of the majority of the analytes, and a second with the sample diluted so that high concentration analyte(s) fall within the calibration range. - E The reported value is estimated because of the presence of interference. The potential source of the interference is included in the report narrative. - G This flag identifies a GC/MS result whose concentration exceeds the calibration range for that specific analysis. Usually if one or more compounds have a response greater than full scale, the sample or extract is diluted and re-analyzed. - J Indicates an estimated value for GC/MS data. This flag is used either when estimating a concentration for tentatively identified compounds where a response factor of 1 is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit. - NA This analyte was not analyzed. - NC Applies to RPD and spike recovery results. The relative percent differ ence (RPD) and spike recovery are not calculated when a result value is less than five times the detection limit or obvious matrix interferences are present. See * definition for further explanation of the unreliability of data near the detection limit. A spike recovery is not calculated when the sample result is greater than four times the spike added concentration because the spike added concentration is considered insignificant. - ND This flag (or <) is used to denote analytes which are not detected at or above the specified detection limit. The value to the right of the < symbol is the method specified detection limit for the sample. - NR This analyte was not requested by the client. - NS This analyte or surrogate was not added (spiked) to the sample for this analysis. - N\A A result or value is not available for this parameter, usually a detection limit. - P Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The P flag indicates that the analyte has been confirmed previously. This flag is applicable to analyses of samples arising from a regular sampling program as a specific sample source; for example, a quarterly well monitoring program. - This quality control standard is outside method or laboratory specified control limits. This flag is applied to matrix spike, analytical QC spike, and surrogate recoveries; and to RPD(relative percent difference) values for duplicate analyses and matrix spike/matrix spike duplicate result. - R This flag indicates that the analyte was detected in the reagent blank and the sample results are corrected for the amount in the blank. - S This flag indicates that a specific result from a metals analysis has been obtained using the Method of Standard Addition. - U Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The U flag indicates that second column was not requested. - X Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The X flag indicates a second column confirmation was performed but the analyte was not confirmed and is likely a false positive. - * The asterisk(*) is used to flag results which are less than five times the method specified detection limit. Studies have shown that the uncertainty of the analysis will increase exponentially as the method detection limit is approached. These results should be considered approximate. Notes and Definitions Page: A-3 ERM - North Central Radian Work Order: 89-07-266 TERMS USED IN THIS REPORT: Analyte - A chemical for which a sample is to be analyzed. The analysis will meet EPA method and QC specifications. Compound - See Analyte. Detection Limit - The method specified detection limit, which is the lower limit of quantitation specified by EPA for a method. Radian staff regularly assess their laboratories, method detection limits to verify that they meet or are lower than those specified by EPA. Detection limits which are higher than method limits are based on experimental values at the 99% confidence level. Note, the detection limit may vary from that specified by EPA based on sample size, dilution or cleanup. (Refer to Factor, below) EPA Method · The EPA specified method used to perform an analysis. EPA has specified standard methods for analysis of environmental samples. Radian will perform its analyses and accompanying QC tests in conformance with EPA methods unless otherwise specified. Factor - Default method detection limits are based on analysis of clean water samples. A factor is required to calculate sample specific detection limits based on alternate matrices (soil or water), use of cleanup procedures, or dilution of extracts/digestates. For example, extraction or digestion of 10 grams of soil in contrast to 1 liter of water will result in a factor of 100. Matrix - The sample material. Generally, it will be soil, water, air, oil, or solid waste. Radian Work Order - The unique Radian identification code assigned to the samples reported in the analytical summary. | Units - | ug/L | micrograms per liter (parts per billion);liquids/water | |---------|-------------|---| | | ug/Kg | micrograms per kilogram (parts per billion); soils/solids | | | ug/M3 | micrograms per cubic meter; air samples | | | mg/L | milligrams per liter (parts per million);liquids/water | | |
mg/Kg | milligrams per kilogram (parts per million);soils/solids | | | * | percent; usually used for percent recovery of QC standards | | | uS/cm | conductance unit; microSiemans/centimeter | | | mL/hr | milliliters per hour; rate of settlement of matter in water | | | W 76 | ່າເທາະກຳດ້າເຈົ້າພາກຳເ; nephelometric turbidity unit | | | CU | color unit; equal to 1 mg/L of chloroplatinate sait | ERM - North Central | Method:SW8240-Volatile Organic | s (1) | | | | | | |--------------------------------|------------|-------|-------------|-------------|--------------|-------| | List:8240 Table 1 | | | | | | | | Sample ID: | SB1A | SB1B | SB1C | SB2A | S B2B | SB2C | | Factor: | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 03B | 04B | 05 8 | 0 6B | 0 7B | 088 | | Matrix: | solid | solid | solid | solid | solid | solid | | Methylene chloride | 12* | 11* | 12* | <5.0 | <5.0 | 11* | | Styrene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,1,2,2-Tetrachloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Tetrachloroethene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Toluene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Tribromomethane(Bromoform) | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,1,1-Trichloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,1,2-Trichloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Trichloroethene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Trichlorofluoromethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,2,3-Trichtoropropane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Vinyl acetate | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Vinyl chloride | <10 | <10 | <10 | <10 | <10 | <10 | | Xylenes | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Surrogate Recovery(%) | | | | | | | | 1,4-Bromofluorobenzene | 97 | 96 | 98 | 98 | 95 | 93 | | Control Limits: 62 to 98 | | | | | | | | 1,2-Dichloroethane-d4 | 101 | 101 | 99 | 98 | 100 | 100 | | Control Limits: 91 to 110 | | | | | | | | Toluene-d8 | 9 9 | 98 | 100 | 98 | 97 | 97 | | Control Limits: 91 to 103 | | | | | | | ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8240-Volatile Organic | s (1) | | | | | | |--------------------------------|-------------|--------------|-------|-------|--------------|-------| | List:8240 Table 1 | | | | | | | | Sample ID: | S83A | SB 3B | SB3C | SB4A | S B4B | SB4C | | Factor: | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 0 98 | 10 B | 118 | 128 | 138 | 148 | | Matrix: | solid | solid | solid | solid | solid | solic | | Acetone | <100 | <100 | <100 | <100 | <100 | <100 | | Acrolein | <75 | <75 | <75 | <75 | <75 | <75 | | Acrylonitrile | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Bromodichloromethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Bromomethane | <10 | <10 | <10 | <10 | <10 | <10 | | Carbon disulfide | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Carbon tetrachloride | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Chlorobenzene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Chloroethane | <10 | <10 | <10 | <10 | <10 | <10 | | 2-Chioroethyl vinyl ether | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Chloromethane | <10 | <10 | <10 | <10 | <10 | <10 | | Dibromochloromethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Dibromomethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | trans-1,4-Dichloro-2-butene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Dichlorodifluoromethane | 8.9* | <5.0 | 8.9* | 11* | 18* | <5.0 | | 1,1-Dichloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,2-Dichloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,1-Dichloroethene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | rnans-1, 2-Nichlanaehens | ≪5.% | ₹5.0 | Ø.6> | <5.0 | <5.0 | <5.0 | | 1,2-Dichtoropropane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | cis-1,3-Dichloropropene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | trans-1,3-Dichloropropene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Ethyl benzene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Ethyl methacrylate | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 2-Hexanone | <50 | <50 | <50 | <50 | <50 | <50 | | Iodomethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Methyl ethyl ketone | <100 | <100 | <100 | <100 | <100 | <100 | | 4-Methyl-2-pentanone(MIBK) | <50 | <50 | <50 | <50 | <50 | <50 | ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ERM - North Central | Method:SW8240-Volatile Organic | s (1) | | | • | | | |--------------------------------|-------------|--------------|--------------|-------|-------|-------| | List:8240 Table 1 | | | | | | | | Sample ID: | SB3A | S B3B | S B3C | SB4A | S848 | SB4C | | Factor: | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 0 9B | 10B | 118 | 12B | 13B | 148 | | Matrix: | solid | solid | solid | solid | solid | solio | | Methylene chloride | 9.7* | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Styrene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,1,2,2-Tetrachloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Tetrachloroethene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Tolu ene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Tribromomethane(Bromoform) | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,1,1-Trichloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,1,2-Trichloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Trichloroethene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Trichlorofluoromethane | <5.0 | <5.0 | <5.0 | 12* | <5.0 | <5.0 | | 1,2,3-Trichloropropane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Vinyl acetate | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Vinyl chloride | <10 | <10 | <10 | <10 | <10 | <10 | | Xylenes | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Surrogate Recovery(%) | | | | | | | | 1,4-Bromofluorobenzene | 92 | 98 | 96 | 97 | 98 | 96 | | Control Limits: 62 to 98 | | | | | | | | 1,2-Dichloroethane-d4 | 100 | 101 | 101 | 100 | 101 | 101 | | Control Limits: 91 to 110 | | | | | | | | To luene-d8 | 99 | 99 | 98 | 96 | 98 | 100 | | Control Limits: 91 to 103 | | | | | | | ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8240-Volatile Organic | (1) | | |--------------------------------|--------------|--| | List:8240 Table 1 | | | | Sample ID: | SYSTEM BLANK | | | Factor: | 1.000 | | | Results in: | ug/Kg | | | NCOULTS III | 168 | | | Matrix: | solid | | | ndt, tx. | | | | Acetone | <100 | | | Acrolein | <75 | | | Acrylonitrile | <25 | | | Benz ena | <5.0 | | | Bromodichloromethane | <5.0 | | | Bromomethane | <10 | | | Carbon disulfide | <5.0 | | | Carbon tetrachloride | <5.0 | | | Chlorobenzene | <5.0 | | | Chloroethane | <10 | | | 2-Chloroethyl vinyl ether | <10 | | | Chloroform | <5.0 | | | Chloromethane | <10 | | | Dibromochloromethane | <5.0 | | | Dibromomethane | <5.0 | | | trans-1,4-Dichloro-2-butene | <5.0 | | | Dichlorodifluoromethane | <5.0 | | | 1,1-Dichtoroethane | <5.0 | | | 1,2-Dichloroethane | <5.0 | | | 1,1-Dichloroethene | <5.0 | | | trans-1,2-Dichloroethene | <5.0 | | | 1,2-Dichtoropropane | <5.0 | | | cis-1,3-Dichloropropene | <5.0 | | | trans-1,3-Dichloropropene | <5.0 | | | | <5.0 | | | Ethyl benzene | <5.0 | | | Ethyl methacrylate | | | | 2-Hexanone | <50 | | | Iodomethane | <5.0 | | | Methyl ethyl ketone | <100 | | | 4-Methyl-2-pentanone(MIBK) | <50 | | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8240-Volatile Organic | s (1) | | |--------------------------------|--------------|--| | List:8240 Table 1 | | | | Sample ID: | SYSTEM BLANK | | | Factor: | 1.000 | | | Results in: | ug/Kg | | | | 16B | | | Matrix: | solid | | | Methylene chloride | <5.0 | | | Styrene | <5.0 | | | 1,1,2,2-Tetrachloroethane | <5.0 | | | Tetrachloroethene | <5.0 | | | Toluene | <5.0 | | | Tribromomethane(Bromoform) | <5.0 | | | 1,1,1-Trichloroethane | <5.0 | | | 1,1,2-Trichloroethane | <5.0 | | | Trichloroethene | <5.0 | | | Trichlorofluoromethane | <5.0 | | | 1,2,3-Trichloropropane | <5.0 | | | Vinyl acetate | <5.0 | | | Vinyl chloride | <10 | | | Xylenes | <5.0 | | | Surrogate Recovery(%) | | | | 1,4-Bromofluorobenzene | 99 q | | | Control Limits: 62 to 98 | | | | 1,2-Dichloroethane-d4 | 100 | | | Control Limits: 91 to 110 | | | | Toluene-d8 | 100 | | | Control Limits: 91 to 103 | | | Q Outside control limits ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ERM - North Central | Method:SW8240-Volatile Organic | s (1) | | | | |--------------------------------|-------------|-------------|--------------|--| | List:8240 Table 1 | | | | | | Sample ID: | TSI | DECON I | SYSTEM BLANK | | | Factor: | 5.000 | 1.000 | 1.000 | | | Results in: | ug/L | ug/L | ug/L | | | | 0 1B | 0 2B | 158 | | | Matrix: | water | water | water | | | Acetone | <500 | <100 | <100 | | | Acrolein | <380 | <75 | <75 | | | Acrylonitrile | <130 | <25 | <25 | | | Benzene | <25 | <5.0 | <5.0 | | | Bromodichloromethane | <25 | <5.0 | <5.0 | | | Bromomethane | <50 | <10 | <10 | | | Carbon disulfide | <25 | <5.0 | <5.0 | | | Carbon tetrachloride | <25 | <5.0 | <5.0 | | | Chlorobenzene | <25 | <5.0 | <5.0 | | | Chloroeth ane | <50 | <10 | <10 | | | 2-Chloroethyl vinyl ether | <50 | <10 | <10 | | | Chloroform | <25 | <5.0 | <5.0 | | | Chloromethane | <50 | <10 | <10 |
 | Dibromochloromethane | <25 | <5.0 | <5.0 | | | Dibromomethane | <25 | <5.0 | <5.0 | | | trans-1,4-Dichloro-2-butene | <25 | <5.0 | <5.0 | | | Dichlorodifluoromethane | <25 | <5.0 | <5.0 | | | 1,1-Dichloroethane | <25 | <5.0 | <5.0 | | | 1,2-Dichloroethane | <25 | <5.0 | <5.0 | | | 1,1-Dichloroethene | <25 | <5.0 | <5.0 | | | trans-1,2-Dichloroethene | <25 | <5.0 | <5.0 | | | 1,2-Dichloropropane | <25 | <5.0 | <5.0 | | | cis-1,3-Dichloropropene | <25 | <5.0 | <5.0 | | | trans-1,3-Dichloropropene | <25 | <5.0 | <5.0 | | | Ethyl benzene | <25 | <5.0 | <5.0 | | | Ethyl methacrylate | <25 | <5.0 | <5.0 | | | 2-Hexanone | <250 | <50 | <50 | | | Iodomethane | <25 | <5.0 | <5.0 | | | Methyl ethyl ketone | <500 | 95* | <100 | | | 4-Methyl-2-pentanone(MIBK) | <250 | <50 | <50 | | ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8240-Volatile Organic | s (1) | | | | |--------------------------------|-------|---------|--------------|--| | List:8240 Table 1 | | | | | | Sample ID: | TSI | DECON I | SYSTEM BLANK | | | Factor: | 5.000 | 1.000 | 1.000 | | | Results in: | ug/L | ug/L | ug/L | | | | 01B | 028 | 158 | | | Matrix: | water | water | water | | | Methylene chloride | 670 | <5.0 | <5.0 | | | Styrene | <25 | <5.0 | <5.0 | | | 1,1,2,2-Tetrachloroethane | <25 | <5.0 | <5.0 | | | Tetrachloroethene | <25 | <5.0 | <5.0 | | | Toluene | <25 | <5.0 | <5.0 | | | Tribromomethane(Bromoform) | <25 | <5.0 | <5.0 | | | 1,1,1-Trichloroethane | <25 | <5.0 | <5.0 | | | 1,1,2-Trichloroethane | <25 | <5.0 | <5.0 | | | Trichloroethene | <25 | <5.0 | <5.0 | | | Trichlorofluoromethane | <25 | <5.0 | <5.0 | | | 1,2,3-Trichloropropane | <25 | <5.0 | <5.0 | | | Vinyl acetate | <25 | <5.0 | <5.0 | | | Vinyl chloride | <50 | <10 | <10 | | | Xylenes | 1500 | <5.0 | <5.0 | | | Surrogate Recovery(%) | | | | | | 1,4-Bromofluorobenzene | 157 | 97 | 99 | | | Control Limits: 55 to 167 | | | | | | 1,2-Dichloroethane-d4 | 100 | 101 | 100 | | | Control Limits: 39 to 156 | | | | | | Toluene-d8 | 103 | 101 | 100 | | | Control Limits: 58 to 146 | | | | | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ERM - North Central | Method:SW8270-Illinois list (1 |) | | | | | | |--------------------------------|-------------|------------|-------|-------------|-------|-------------| | List: | | | | | | | | Sample ID: | SB1A | SB1B | SB1C | SB2A | SB2B | SB2C | | Factor: | 1.000 | 1.000 | 1.000 | 3.000 | 1.000 | 1.000 | | Results in: | ug/kg | ug/kg | ug/kg | ug/kg | ug/kg | ug/kg | | | 0 38 | 048 | 058 | 0 68 | 078 | 0 8B | | Matrix: | solid | solid | solid | solid | solid | solid | | Acenaphthene | <1200 | <1200 | <1200 | <3600 | <1200 | <1200 | | Acenaphthylene | <660 | <660 | <660 | <2000 | <660 | <660 | | Anthracene | <660 | <660 | <660 | <2000 | <660 | <660 | | Benzo(a)anthracene | 38* | <8.7 | <8.7 | <2 6 | <8.7 | <8.7 | | Benzo(a)pyrene | 39* | <15 | <15 | <45 | <15 | <15 | | Benzo(b)fluoranthene | 44* | <12 | <12 | <36 | <12 | <12 | | Benzo(g,h,í)perylene | <51 | <51 | <51 | <150 | <51 | <51 | | Benzo(k)fluoranthene | 29* | <11 | <11 | <3 3 | <11 | <11 | | Chrysene | <100 | <100 | <100 | <300 | <100 | <100 | | Dibenz(a,h)anthracene | <20 | <20 | <20 | <60 | <20 | <20 | | Fluoranthene | <140 | <140 | <140 | <420 | <140 | <140 | | Fluorene | <140 | <140 | <140 | <420 | <140 | <140 | | Indeno(1,2,3-cd)pyrene | <29 | <29 | <29 | <87 | <29 | <29 | | Naphthalene | <660 | <660 | <660 | <2000 | <660 | <660 | | Phenanthrene | <660 | <660 | <660 | <2000 | <660 | <660 | | Pyrene | <180 | <180 | <180 | <540 | <180 | <180 | | Surrogate Recovery(%) | | | | | | | | 2-Fluorobiphenyl | 91 | 64 | 94 | 93 | 88 | 101 | | Control Limits: 33 to 153 | | | | | | | | 2-Fluorophenol | 87 | 63 | 95 | 93 | 94 | 95 | | Control Limits: 20 to 158 | | | | | | | | Nitrobenzene-d5 | 84 | 62 | 98 | 94 | 87 | 92 | | Control Limits: 21 to 159 | | | | | | | | Phenoi-d5 | 87 | 63 | 94 | 93 | 91 | 96 | | Control Limits: 27 to 154 | | | | | | | | Terphenyl-d14 | 89 | <i>7</i> 3 | 105 | 107 | 92 | 102 | | Control Limits: 0 to 223 | | | | | | | | 2,4,6-Tribromphenol | 92 | 60 | 87 | 91 | 84 | 96 | | Control Limits: 0 to 179 | | | | | | | ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds. | Method:SW8270-Illinois list (1 |) | | | | | | |--------------------------------|-------------|-------------|--------------|-------------|--------------|--------------| | List: | | | | | | | | Sample ID: | SB3A | SB3B | S B3C | SB4A | S B4B | S 84C | | Factor: | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Results in: | ug/kg | ug/kg | ug/kg | ug/kg | ug/kg | ug/kg | | | 0 9B | 10 B | 118 | 12 B | 13 B | 148 | | Matrix: | solid | solid | solid | solid | solid | solic | | Acenaphthene | <1200 | <1200 | <1200 | <1200 | <1200 | <1200 | | Ac enaph thy lene | <660 | <660 | <660 | <660 | <660 | <660 | | Anthracene | <660 | <660 | <660 | <660 | <660 | <660 | | Benzo(a)anthracene | 13* | <8.7 | <8.7 | <8.7 | <8.7 | <8.7 | | Benzo(a)pyrene | <15 · | <15 | <15 | <15 | <15 | <15 | | Benzo(b)fluoranthene | 13* | <12 | <12 | <12 | <12 | <12 | | Benzo(g,h,i)perylene | <51 | <51 | <51 | <51 | <51 | <51 | | Benzo(k)fluoranthene | <11 | <11 | <11 | <11 | <11 | <11 | | Chrysene | <100 | <100 | <100 | <100 | <100 | <100 | | Dibenz(a,h)anthracene | <20 | <20 | <20 | <20 | <20 | <20 | | Fluoranthene | <140 | <140 | <140 | <140 | <140 | <140 | | Fluorene | <140 | <140 | <140 | <140 | <140 | <140 | | Indeno(1,2,3-cd)pyrene | <29 | <29 | <29 | <29 | <29 | <29 | | Naphthalene ' | <660 | <660 | <660 | <660 | <660 | <660 | | Phenanthrene | <660 | <660 | <660 | <660 | <660 | <660 | | Pyrene | <180 | <180 | <180 | <180 | <180 | <180 | | Surrogate Recovery(%) | | | | | | | | 2-Fluorobiphenyl | 96 | 94 | 91 | 87 | 98 | 93 | | Control Limits: 33 to 153 | | | | | | • | | 2-Fluorophenol | 83 | 96 | 93 | 81 | 95 | 93 | | Control Limits: 20 to 158 | | | | | | | | Nitrobenzene-d5 | 87 | 93 | 92 | 79 | 89 | 89 | | Control Limits: 21 to 159 | | | | | | | | Phenol-d5 | 87 | 88 | 87 | 80 | 95 | 91 | | Control Limits: 27 to 154 | | | | | | | | Terphenyl-d14 | 101 | 103 | 107 | 82 | 103 | 101 | | Control Limits: 0 to 223 | | | | | | | | 2,4,6-Tribromphenol | 90 | 96 | 93 | 92 | 97 | 86 | | Control Limits: 0 to 179 | | | | | | | ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds. | Method:SW8270-Illinois list (1 | | | |--------------------------------|---------------|--| | List: | | | | Sample ID: | REAGENT BLANK | | | Factor: | 1.000 | | | Results in: | ug/kg | | | | 18A | | | Matrix: | solid | | | Acenaph thene | <1200 | | | Acenaph thy lene | <660 | | | Anthracene | <660 | | | Benzo(a)anthracene | <8.7 | | | Benzo(a)pyrene | <15 | | | Benzo(b)fluoranthene | <12 | | | Benzo(g,h,i)perylene | <51 | | | Benzo(k)fluoranthene | <11 | | | Chrysene | <100 | | | Dibenz(a,h)anthracene | <20 | | | Fluoranthene | <140 | | | Fluorene | <140 | | | Indeno(1,2,3-cd)pyrene | <29 | | | Naphtha Lene | <660 | | | Phenanthrene | <660 | | | Pyrene | <180 | | | Surrogate Recovery(%) | | | | 2-Fluorobiphenyl | 87 | | | Control Limits: 33 to 153 | | | | 2-Fluoroph eno l | 91 | | | Control Limits: 20 to 158 | | | | Nitrobenzene-d5 | 92 | | | Control Limits: 21 to 159 | | | | Ph en ol-d5 | 92 | | | Control Limits: 27 to 154 | | | | Terphenyl-d14 | 97 | | | Control Limits: 0 to 223 | | | | 2,4,6-Tribromphenol | 81 | | | Control Limits: 0 to 179 | | | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds. Analytical Report 09/06/89 ERM - North Central ERM North Central 102 Wilmont Road Deerfield, IL 60015 Customer Work Identification Suntec Industries Purchase Order Number 9155 #### Contents: - Analytical Data Summary - 2 Sample History - Comments Summary - Notes and Definitions Radian Corporation 8501 MoPac Boulevard Austin, Texas 78720-1088 512/454-4797 Client Services Coordinator: CSAPPLEGATE certified by: Muchae (C. Sleipher | Method:SW8240-Illinois list (1 | • | | | | | | |--------------------------------|-------|--------------|-------------|-------------|-------------|-------------| | List: | | | | | | | | Sample ID: | SB1A | S B1B | SB1C | SB2A | SB28 | SB2C | | Factor: | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 03A | 04A | 05 A | 06 A | 07 A | A8 0 | | Matrix: | solid | solid | solid | solid | solid | solid | | Benzene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,2-Dichloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Ethyl benzene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | n-Hexane | <10 | <10 | <10 | <10 | <10 | <10 | | Toluene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Xylenes | <15 | <15 | <15 | <15 | <15 | <15 | | Surrogate Recovery(%) | | | | | | | | 1,4-Bromofluorobenzene | 97 | 96 | 98 | 98 | 95 | 93 | | Control Limits: 62 to 98 | | | | | | | | 1,2-Dichloroethane-d4 | 101 | 101 | 99 | 98 | 100 | 100 | | Control Limits: 91 to 110 | | | | | | | | Tol uene-d8 | 99 | 98 | 100 | 98 | 97 | 97 | | Control Limits: 91 to 103 | | | | | | | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this
report. ERM - North Central | Method:SW8240-Illinois list (1 |) | | | | | | |--------------------------------|-------|--------------|--------------|-------------|-------|--------------| | List: | | | | | | | | Sample ID: | SB3A | S B3B | S B3C | SB4A | SB4B | S 84C | | Factor: | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 09A | 10 A | 11A | 12 A | 13A | 14 A | | Matrix: | solid | solid | solid | solid | solid | solic | | Benzene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,2-Dichloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Ethyl benzene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | n-H exane | <10 | <10 | <10 | <10 | <10 | <10 | | Tol uene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Xytenes | <15 | <15 | <15 | <15 | <15 | <15 | | Surrogate Recovery(%) | | | | | | | | 1,4-Bromofluorobenzene | 92 | 98 | 96 | 97 | 99 Q | 96 | | Control Limits: 62 to 98 | | | | | | | | 1,2-Dichloroethane-d4 | 100 | 101 | 101 | 10 0 | 101 | 101 | | Control Limits: 91 to 110 | | | | | | | | Toluene-d8 | 99 | 99 | 98 | 96 | 98 | 100 | | Control Limits: 91 to 103 | | | | | | | Q Outside control limits ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8Z40-Illinois list (1 |) | | |--------------------------------|--------------|--| | List: | | | | Sample ID: | SYSTEM BLANK | | | Factor: | 1.000 | | | Results in: | ug/Kg | | | | 16A | | | Matrix: | solid | | | Benzene | <5.0 | | | 1,2-Dichloroethane | <5.0 | | | Ethyl benzene | <5.0 | | | n-Hexane | <10 | | | Toluene | <5.0 | | | Xylenes | <15 | | | Surrogate Recovery(%) | | | | 1,4-Bromoftuorobenzene | 99 Q | | | Control Limits: 62 to 98 | | | | 1,2-Dichloroethane-d4 | 100 | | | Control Limits: 91 to 110 | | | | Toluene-d8 | 100 | | | Control Limits: 91 to 103 | | | Q Outside control limits ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8240-Illinois list (1 |) | | | | |--------------------------------|-------------|-------------|--------------|--| | List: | | | | | | Sample ID: | TSI | DECON I | SYSTEM BLANK | | | Factor: | 5.000 | 1.000 | 1.00 | | | Results in: | ug/L | ug/L | ug/L | | | | 01A | 0 2A | 15A | | | Matrix: | water | water | water | | | Benzene | <25 | <5.0 | <5.0 | | | 1,2-Dichloroethane | <2 5 | <5.0 | <5.0 | | | Ethyl benzene | <25 | <5.0 | <5.0 | | | n-Hexane | <50 | <10 | <10 | | | Totuene | <25 | <5.0 | <5.0 | | | Xylenes | 1500 | <15 | <15 | | | Surrogate Recovery(%) | | | | | | 1,4-Bromofluorobenzene | 157 | 97 | 99 | | | Control Limits: 55 to 167 | | | | | | 1,2-Dichloroethane-d4 | 10 0 | 101 | 100 | | | Control Limits: 39 to 156 | | | | | | Toluene-d8 | 103 | 101 | 100 | | | Control Limits: 58 to 146 | | | | | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8240-Volatile Organic | s (1) | | | |--------------------------------|---------|----------|--| | List:8240 MATRIX SPIKE | | | | | Sample ID: | S848 MS | SB4B MSD | | | Factor: | 2.000 | 2.000 | | | Results in: | X | * | | | | 13C | 130 | | | Matrix: | solid | solid | | | Benzene | 81 | 79 | | | Chlorobenzene | 105 | 102 | | | 1,1-Dichloroethene | 62 | 60 | | | Toluene | 100 | 95 | | | Trichloroethene | 92 | 84 | | | Surrogate Recovery(%) | | | | | 1,4-Bromofluorobenzene | 96 | 98 | | | Control Limits: 62 to 98 | | | | | 1,2-Dichloroethane-d4 | 99 | 102 | | | Control Limits: 91 to 110 | | | | | Toluene-d8 | 101 | 98 | | | Control Limits: 91 to 103 | | | | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ERM - North Central | Method:SW8240-Volatile Organic | s (1) | | | | | | |-------------------------------------|-------------|--------------|-------------|-------------|-------------|--------------| | List:8240 Table 1 | | | | | | | | Sample ID: | SB1A | S B1B | SB1C | SB2A | SB2B | S B2C | | Factor: | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Results in: | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | ug/Kg | | | 0 38 | 04 B | 05 B | 0 6B | 0 78 | 088 | | Matrix: | solid | solid | solid | solid | solid | solid | | Acetone | <100 | <100 | <100 | <100 | <100 | <10 0 | | Acrolein | <75 | <75 | <75 | <75 | <75 | <75 | | Acrylonitrile | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Bromodichloromethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Bromomethane | <10 | <10 | <10 | <10 | <10 | <10 | | Carbon disulfide | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Carbon tetrachloride | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Chlorob enzene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Chloroethane | <10 | <10 | <10 | <10 | <10 | <10 | | 2-Chloroethyl vinyl ether | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Chloromethane | <10 | <10 | <10 | <10 | <10 | <10 | | Dibromochtoromethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Dibromomethan e | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | trans-1,4-Dichloro-2-butene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Dichlorodifluoromethane | <5.0 | 35 | <5.0 | <5.0 | <5.0 | 10* | | 1,1-Dichloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,2-Dichloroethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,1-Dichloroethene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | trans-1,2-Dichloroethene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 1,2-Dichloropropane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | cis-1,3-Dichloroprop ene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | trans-1,3-Dichloropropene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Ethyl benzene | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Ethyl methacrylate | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | 2-Hexanone | <50 | <50 | <50 | <50 | <50 | <50 | | Iodomethane | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Methyl ethyl ketone | <100 | <100 | <100 | <100 | <100 | <100 | | 4-Methyl-2-pentanone(MIBK) | <50 | <50 | <50 | <50 | <50 | <50 | ^{*} Est. result less than 5 times detection limit ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. | Method:SW8270-Illinois list (1 |) | |--------------------------------|--------------| | List: | | | Sample ID: | DECON I | | Factor: | 1.000 | | Results in: | ug/L | | | 02 C | | Matrix: | water | | Acenaphthene | <1200 | | Acenaphthylene | <660 | | Anthracene | <660 | | Benzo(a)anthracene | <8.7 | | Benzo(a)pyrene | <15 | | Benzo(b)fluoranthene | <12 | | Benzo(g,h,i)perylene | <51 | | Benzo(k)fluoranthene | <11 | | Chrysene | <10 0 | | Dibenz(a,h)anthracene | <20 | | Fluoranthene | <140 | | Fluorene | <140 | | Indeno(1,2,3-cd)pyrene | <29 | | Naphthal ene | <660 | | Phenanthrene | <660 | | Pyrene | <180 | | Surrogate Recovery(%) | | | 2-Fluorobiphenyl | 71 | | Control Limits: 33 to 153 | | | 2-Fluorophenol | 48 | | Control Limits: 20 to 158 | | | Nitrobenzene-d5 | 50 | | Control Limits: 21 to 159 | | | Phenol-d5 | 51 | | Control Limits: 27 to 154 | | | Terphenyi-d14 | 102 | | Control Limits: 0 to 223 | | | 2,4,6-Tribromphenol | 93 | | Control Limits: 0 to 179 | | ⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report. ^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds. ERM - North Central Radian Work Order: 89-07-265 | Sample Identifications and Dates | | | | | | | | |----------------------------------|----------|----------|------------------|----------|----------|----------|--| | Sample ID | TSI | DECON I | SB1A | SB1B | SB1C | SB2A | | | Date Sampled | 07/24/89 | 07/25/89 | 07/24/89 | 07/24/89 | 07/24/89 | 07/24/89 | | | Date Received | 07/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | | | Matrix | water | water | solid | solid | solid | solid | | | | 01 | 02 | 03 | 04 | 05 | 06 | | | W8240-Illinois list | | | | | | | | | Prepared | | | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | | | Analyzed | | | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | | | Analyst | | | MCL | MCL | MCL | MCL | | | File ID | | | 74501 | 74502 | 74503 | 74504 | | | Report as | | | receiv ed | received | received | received | | | W8240-Illinois list | | | | | | | | | Prepared | 08/03/89 | 08/03/89 | | | | | | | Analyzed | 08/03/89 | 08/03/89 | | | | | | | Analyst | MCL | MCL | | | | | | | File ID | 74485 | 74486 | | | | | | | Report as | received | received | | | | | | | W8240-Volatile Organics | | | | | | | | | Prepared | • | | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | | | Analyzed | | | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | | | Analyst | | | MCL | MCL | MCL | MCL | | | File ID | | | 74501 | 74502 | 74503 | 74504 | | | Report as | | | received | received | received | received | | | W8240-Volatile Organics | | | | | | | | | Prepared | 08/03/89 | 08/03/89 | | | | | | | Analyzed | 08/03/89 | 08/03/89 | | | | | | | Analyst | MCL | MCL | | | | | | | File ID | 74485 | 74486 | | | | | | | Report as | received | received | | | | | | | W8270-Illinois list | | | 07.74.00 | 07/74/00 | 07.74.00 | | | | Prepared | | | 07/31/89 | 07/31/89 | 07/31/89 | 07/31/89 | | | Analyzed | | | 08/04/89 | 08/04/89 | 08/04/89 | 08/03/89 | | | Analyst | | | MCK | MCK | MCK | MCK | | | File ID | | | 82164 | 82157 | 82158 | 82151 | | | Report as | | | received | received | received | received | | | W8270-Illinois list | | 09/00/90 | | | | | | | Prepared | | 08/09/89 | | | | | | | Analyzed | | 08/23/89 | | | | | | | Analyst | | MCK | | | | | | | File ID | | 82282 | | | | | | | Report as | | received | | | | | | | Sample Identifications and Dates | | | | | | | |
----------------------------------|--------------|------------------|----------|--------------|---------------------------------------|----------|--| | Sample ID | S B2B | SB2C | SB3A | S B3B | SB3C | SB4A | | | Date Sampled | 07/24/89 | 07/24/89 | 07/24/89 | 07/24/89 | 07/24/89 | 07/24/89 | | | Date Received | 07/27/89 | 0 7/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | 07/27/89 | | | Matrix | solid | solid | solid | solid | solid | solid | | | | 07 | 08 | 09 | 10 | 11 | 12 | | | SW8240-Illinois list | | | | | · · · · · · · · · · · · · · · · · · · | | | | Prepared | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | | | Analyzed | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | | | Analyst | MCL | MCL | MCL | MCL | MCL | MCL | | | File ID | 74505 | 74506 | 74507 | 74508 | 74509 | 74510 | | | Report as | received | received | received | received | received | received | | | W8240-Volatile Organics | | | | | | | | | Prepared | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | | | Analyzed | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | | | Analyst | MCL | MCL | MCL | MCL | MCL | MCL | | | File ID | 74505 | 74506 | 74507 | 74508 | 7450 9 | 74510 | | | Report as | received | received | received | received | received | received | | | W8270-Illinois list | | | | | | | | | Prepared | 07/31/89 | 07/31/89 | 08/01/89 | 07/31/89 | 07/31/89 | 07/31/89 | | | Analyzed | 08/03/89 | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | 08/04/89 | | | Analyst | MCK | MCK | MCK | MCK | MCK | MCK | | | File ID | 82152 | 82159 | 82163 | 82160 | | 82167 | | | Report as | received | received | received | received | received | received | | | Sample Identifications and Dates | | | | | | | |----------------------------------|---------------|------------------|------------------|--------------|---------------|--| | Sample 1D | SB4B | SB4C | SYSTEM BLANK | SYSTEM BLANK | REAGENT BLANK | | | Date Sample | ed 07/24/89 | 07/24/89 | | | | | | Date Receiv | red 07/27/89 | 0 7/27/89 | 0 7/27/89 | 07/27/89 | 07/27/89 | | | Matrix | solid | solid | water | solid | solid | | | | 13 | 14 | 15 | 16 | 18 | | | W8240-Illinois list | | <u></u> | | | | | | Prepar | ed 08/04/89 | 08/04/89 | | 08/04/89 | | | | Analyz | ed 08/04/89 | 08/04/89 | | 08/04/89 | | | | Analys | et MCL | MCL | | MCL | | | | File I | 0 74511 | 74514 | | 74500 | | | | Report | as received | received | | received | | | | SW8240-Illinois list | • | | | | | | | Prepar | red | | 08/04/89 | | | | | Analyz | ed | | 08/04/89 | | | | | Analys | it | | MCL | | | | | File I | D | | 74500 | | | | | Report | as | | received | | | | | .18240-Volatile Orga | nics . | | | | | | | Prepar | | | | | | | | Analya | | | | | | | | Analys | | | | | | | | File I | ID 74519 | | | | | | | Report | | | | | | | | 18240-Volatile Orga | | | | | | | | Prepai | | 08/04/89 | | 08/04/89 | | | | Analy | | 08/04/89 | | 08/04/89 | | | | Analys | | MCL | | MCL | | | | file | | 74514 | | 74500 | | | | Report | | received | | received | | | | 8240-Volatile Orga | • | | | | | | | Prepai | | | 08/04/89 | | | | | Analy | | | 08/04/89 | | | | | Analys | | | MCL | | | | | File | | | 74500 | | | | | Report | | | received | | | | | SW8270-Illinois list | | AT 174 - AA | | | 45.54 | | | Prepai | | 07/31/89 | | | 07/31/89 | | | Analy | | 08/04/89 | | | 08/04/89 | | | Analy | | MCK | | | MCK | | | File | | 82162 | | | 82150 | | | Report | t as received | received | | | received | | ## Appendix A Comments, Notes and Definitions - A This flag indicates that a spike is an analytical and/or postdigestion spike. These spikes have not been subjected to the extraction or digestion step. - B This flag indicates that the analyte was detected in the reagent blank but the sample results are not corrected for the amount in the blank. - Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The C flag indicates that the analyte has been confirmed by analysis on a second column. - D This flag identifies all analytes identified in analysis at a secondary dilution factor. In an analysis some compounds can exceed the calibration range of the instrument. Therefore two analyses are performed, one at the concentration of the majority of the analytes, and a second with the sample diluted so that high concentration analyte(s) fall within the calibration range. - E The reported value is estimated because of the presence of interference. The potential source of the interference is included in the report narrative. - G This flag identifies a GC/MS result whose concentration exceeds the calibration range for that specific analysis. Usually if one or more compounds have a response greater than full scale, the sample or extract is diluted and re-analyzed. - J Indicates an estimated value for GC/MS data. This flag is used either when estimating a concentration for tentatively identified compounds where a response factor of 1 is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit. - NA This analyte was not analyzed. - NC Applies to RPD and spike recovery results. The relative percent differ ence (RPD) and spike recovery are not calculated when a result value is less than five times the detection limit or obvious matrix interferences are present. See * definition for further explanation of the unreliability of data near the detection limit. A spike recovery is not calculated when the sample result is greater than four times the spike added concentration because the spike added concentration is considered insignificant. - ND This flag (or <) is used to denote analytes which are not detected at or above the specified detection limit. The value to the right of the < symbol is the method specified detection limit for the sample. - NR This analyte was not requested by the client. - NS This analyte or surrogate was not added (spiked) to the sample for this analysis. Radian Work Order: 89-07-265 N\A A result or value is not available for this parameter, usually a detection limit. - P Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The P flag indicates that the analyte has been confirmed previously. This flag is applicable to analyses of samples arising from a regular sampling program as a specific sample source; for example, a quarterly well monitoring program. - Q This quality control standard is outside method or laboratory specified control limits. This flag is applied to matrix spike, analytical QC spike, and surrogate recoveries; and to RPD(relative percent difference) values for duplicate analyses and matrix spike/matrix spike duplicate result. - R This flag indicates that the analyte was detected in the reagent blank and the sample results are corrected for the amount in the blank. - S This flag indicates that a specific result from a metals analysis has been obtained using the Method of Standard Addition. - U Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The U flag indicates that second column was not requested. - X Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The X flag indicates a second column confirmation was performed but the analyte was not confirmed and is likely a false positive. - * The asterisk(*) is used to flag results which are less than five times the method specified detection limit. Studies have shown that the uncertainty of the analysis will increase exponentially as the method detection limit is approached. These results should be considered approximate. Radian Work Order: 89-07-265 TERMS USED IN THIS REPORT: Analyte - A chemical for which a sample is to be analyzed. The analysis will meet EPA method and QC specifications. Compound - See Analyte. vary from that specified by EPA based on sample size, dilution or cleanup. (Refer to Factor, below) EPA Method - The EPA specified method used to perform an analysis. EPA has specified standard methods for analysis of environmental samples. Radian will perform its analyses and accompanying QC tests in conformance with EPA methods unless otherwise specified. Factor - Default method detection limits are based on analysis of clean water samples. A factor is required to calculate sample specific detection limits based on alternate matrices (soil or water), use of cleanup procedures, or dilution of extracts/digestates. For example, extraction or digestion of 10 grams of soil in contrast to 1 liter of water will result in a factor of 100. Matrix - The sample material. Generally, it will be soil, water, air, oil, or solid waste. Radian Work Order - The unique Radian identification code assigned to the samples reported in the analytical summary. | Units - | u g/L | micrograms per liter (parts per billion):liquids/water | |---------|--------------|---| | | ug/Kg | micrograms per kilogram (parts per billion); soils/solids | | | ug/M3 | micrograms per cubic meter; air samples | | | mg/L | milligrams per liter (parts per million); liquids/water | | | mg/Kg | milligrams per kilogram (parts per million);soils/solids | | | * | percent; usually used for percent recovery of QC standards | | | uS/cm | conductance unit; microSiemans/centimeter | | | mL/hr | milliliters per hour; rate of settlement of matter in
water | | | NTU | turbidity unit; nephelometric turbidity unit | | | CU | color unit; equal to 1 mg/L of chloroplatinate salt |